IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i6p1333-1341.html
   My bibliography  Save this article

Contribution for optimal sizing of grid-connected PV-systems using PSO

Author

Listed:
  • Kornelakis, Aris
  • Marinakis, Yannis

Abstract

Particle Swarm Optimization (PSO) is an optimization algorithm considered to be highly efficient for the solution of complicated problems. This paper presents the application of this method for the design optimization of photovoltaic grid-connected systems (PVGCSs). The purpose of the proposed methodology is to locate the optimal number of system devices and the optimal values of the PV module installation details, such that the total net economic benefit achieved during the system operational lifetime period is maximized. The optimization's decision variables are the optimal number of the PV modules, the PV modules optimal tilt angle, the optimal placement of the PV modules within the available installation area and the optimal distribution of the PV modules among the DC/AC converters. The objective function of the proposed optimization process is the lifetime system's total net profit which is calculated according to the method of the Net Present Value (NPV). The methodology's resulting system structures are economically evaluated through the methods of the discounted payback time and the Internal Rate of Return (IRR). The PSO algorithm is compared to the application of Genetic Algorithms (GAs) in terms of efficiency for the current problem.

Suggested Citation

  • Kornelakis, Aris & Marinakis, Yannis, 2010. "Contribution for optimal sizing of grid-connected PV-systems using PSO," Renewable Energy, Elsevier, vol. 35(6), pages 1333-1341.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:6:p:1333-1341
    DOI: 10.1016/j.renene.2009.10.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.10.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arán Carrión, J. & Espín Estrella, A. & Aznar Dols, F. & Zamorano Toro, M. & Rodríguez, M. & Ramos Ridao, A., 2008. "Environmental decision-support systems for evaluating the carrying capacity of land areas: Optimal site selection for grid-connected photovoltaic power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2358-2380, December.
    2. Swider, Derk J. & Beurskens, Luuk & Davidson, Sarah & Twidell, John & Pyrko, Jurek & Prüggler, Wolfgang & Auer, Hans & Vertin, Katarina & Skema, Romualdas, 2008. "Conditions and costs for renewables electricity grid connection: Examples in Europe," Renewable Energy, Elsevier, vol. 33(8), pages 1832-1842.
    3. Mondol, Jayanta Deb & Yohanis, Yigzaw G. & Norton, Brian, 2007. "The impact of array inclination and orientation on the performance of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 32(1), pages 118-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Baños, R. & Manzano-Agugliaro, F. & Montoya, F.G. & Gil, C. & Alcayde, A. & Gómez, J., 2011. "Optimization methods applied to renewable and sustainable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1753-1766, May.
    2. Tekai Eddine Khalil Zidane & Mohd Rafi Adzman & Mohammad Faridun Naim Tajuddin & Samila Mat Zali & Ali Durusu & Saad Mekhilef, 2020. "Optimal Design of Photovoltaic Power Plant Using Hybrid Optimisation: A Case of South Algeria," Energies, MDPI, vol. 13(11), pages 1-28, June.
    3. Aronescu, A. & Appelbaum, J., 2017. "Design optimization of photovoltaic solar fields-insight and methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 882-893.
    4. Alharbi, Abdulaziz & Awwad, Zeyad & Habib, Abdulelah & de Weck, Olivier, 2023. "Economical sizing and multi-azimuth layout optimization of grid-connected rooftop photovoltaic systems using Mixed-Integer Programming," Applied Energy, Elsevier, vol. 335(C).
    5. Yang, Bo & Li, Yulin & Huang, Jianxiang & Li, Miwei & Zheng, Ruyi & Duan, Jinhang & Fan, Tingsheng & Zou, He & Liu, Tao & Wang, Jingbo & Shu, Hongchun & Jiang, Lin, 2023. "Modular reconfiguration of hybrid PV-TEG systems via artificial rabbit algorithm: Modelling, design and HIL validation," Applied Energy, Elsevier, vol. 351(C).
    6. Khezri, Rahmat & Mahmoudi, Amin & Aki, Hirohisa, 2022. "Optimal planning of solar photovoltaic and battery storage systems for grid-connected residential sector: Review, challenges and new perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    7. Appelbaum, Joseph & Aronescu, Avi, 2022. "Inter-row spacing calculation in photovoltaic fields - A new approach," Renewable Energy, Elsevier, vol. 200(C), pages 387-394.
    8. Ullah, Hayat & Kamal, Ijlal & Ali, Ayesha & Arshad, Naveed, 2018. "Investor focused placement and sizing of photovoltaic grid-connected systems in Pakistan," Renewable Energy, Elsevier, vol. 121(C), pages 460-473.
    9. Rodrigo, Pedro M. & Mouhib, Elmehdi & Fernandez, Eduardo F. & Almonacid, Florencia & Rosas-Caro, Julio C., 2024. "Comprehensive ground coverage analysis of large-scale fixed-tilt bifacial photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    11. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    12. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    13. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    14. Ghorbani, Narges & Kasaeian, Alibakhsh & Toopshekan, Ashkan & Bahrami, Leyli & Maghami, Amin, 2018. "Optimizing a hybrid wind-PV-battery system using GA-PSO and MOPSO for reducing cost and increasing reliability," Energy, Elsevier, vol. 154(C), pages 581-591.
    15. Yilmaz, Saban & Dincer, Furkan, 2017. "Impact of inverter capacity on the performance in large-scale photovoltaic power plants – A case study for Gainesville, Florida," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 15-23.
    16. Varaha Satra Bharath Kurukuru & Ahteshamul Haque & Mohammed Ali Khan & Subham Sahoo & Azra Malik & Frede Blaabjerg, 2021. "A Review on Artificial Intelligence Applications for Grid-Connected Solar Photovoltaic Systems," Energies, MDPI, vol. 14(15), pages 1-35, August.
    17. Oliva H., Sebastian & MacGill, Iain & Passey, Rob, 2016. "Assessing the short-term revenue impacts of residential PV systems on electricity customers, retailers and network service providers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1494-1505.
    18. Perez-Gallardo, J.R. & Azzaro-Pantel, C. & Astier, S. & Domenech, S. & Aguilar-Lasserre, A., 2014. "Ecodesign of photovoltaic grid-connected systems," Renewable Energy, Elsevier, vol. 64(C), pages 82-97.
    19. Nima Narjabadifam & Mohammed Al-Saffar & Yongquan Zhang & Joseph Nofech & Asdrubal Cheng Cen & Hadia Awad & Michael Versteege & Mustafa Gül, 2022. "Framework for Mapping and Optimizing the Solar Rooftop Potential of Buildings in Urban Systems," Energies, MDPI, vol. 15(5), pages 1-32, February.
    20. Kanters, Jouri & Wall, Maria, 2016. "A planning process map for solar buildings in urban environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 173-185.
    21. Bin Ye & Minhua Zhou & Dan Yan & Yin Li, 2020. "Multi-Objective Decision-Making for Hybrid Renewable Energy Systems for Cities: A Case Study of Xiongan New District in China," Energies, MDPI, vol. 13(23), pages 1-25, November.
    22. Ma, Chao & Deng, Zexing & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Wu, Runze & Tian, Zhuojun, 2024. "Space optimization of utility-scale photovoltaic power plants considering the impact of inter-row shading," Applied Energy, Elsevier, vol. 370(C).
    23. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gómez, M. & López, A. & Jurado, F., 2010. "Optimal placement and sizing from standpoint of the investor of Photovoltaics Grid-Connected Systems using Binary Particle Swarm Optimization," Applied Energy, Elsevier, vol. 87(6), pages 1911-1918, June.
    2. Finn, Thomas & McKenzie, Paul, 2020. "A high-resolution suitability index for solar farm location in complex landscapes," Renewable Energy, Elsevier, vol. 158(C), pages 520-533.
    3. Toledo, Olga Moraes & Oliveira Filho, Delly & Diniz, Antônia Sônia Alves Cardoso, 2010. "Distributed photovoltaic generation and energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 506-511, January.
    4. Hou, Yali & Wang, Qunwei & Tan, Tao, 2023. "An ensemble learning framework for rooftop photovoltaic project site selection," Energy, Elsevier, vol. 285(C).
    5. Yong Zeng & Yanpeng Cai & Guohe Huang & Jing Dai, 2011. "A Review on Optimization Modeling of Energy Systems Planning and GHG Emission Mitigation under Uncertainty," Energies, MDPI, vol. 4(10), pages 1-33, October.
    6. Chen, Hao & Gao, Xin-Ya & Liu, Jian-Yu & Zhang, Qian & Yu, Shiwei & Kang, Jia-Ning & Yan, Rui & Wei, Yi-Ming, 2020. "The grid parity analysis of onshore wind power in China: A system cost perspective," Renewable Energy, Elsevier, vol. 148(C), pages 22-30.
    7. Sueyoshi, Toshiyuki & Goto, Mika, 2017. "Measurement of returns to scale on large photovoltaic power stations in the United States and Germany," Energy Economics, Elsevier, vol. 64(C), pages 306-320.
    8. Sueyoshi, Toshiyuki & Goto, Mika, 2014. "Photovoltaic power stations in Germany and the United States: A comparative study by data envelopment analysis," Energy Economics, Elsevier, vol. 42(C), pages 271-288.
    9. Jabeen, Gul & Ahmad, Munir & Zhang, Qingyu, 2021. "Perceived critical factors affecting consumers’ intention to purchase renewable generation technologies: Rural-urban heterogeneity," Energy, Elsevier, vol. 218(C).
    10. Jabeen, Gul & Yan, Qingyou & Ahmad, Munir & Fatima, Nousheen & Jabeen, Maria & Li, Heng & Qamar, Shoaib, 2020. "Household-based critical influence factors of biogas generation technology utilization: A case of Punjab province of Pakistan," Renewable Energy, Elsevier, vol. 154(C), pages 650-660.
    11. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    12. Hua, Yaping & Oliphant, Monica & Hu, Eric Jing, 2016. "Development of renewable energy in Australia and China: A comparison of policies and status," Renewable Energy, Elsevier, vol. 85(C), pages 1044-1051.
    13. Calvert, K. & Pearce, J.M. & Mabee, W.E., 2013. "Toward renewable energy geo-information infrastructures: Applications of GIScience and remote sensing that build institutional capacity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 416-429.
    14. Sánchez-Lozano, J.M. & García-Cascales, M.S. & Lamata, M.T., 2014. "Identification and selection of potential sites for onshore wind farms development in Region of Murcia, Spain," Energy, Elsevier, vol. 73(C), pages 311-324.
    15. González, Javier Serrano & Lacal-Arántegui, Roberto, 2016. "A review of regulatory framework for wind energy in European Union countries: Current state and expected developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 588-602.
    16. Sunila, Kanerva & Bergaentzlé, Claire & Martin, Bénédicte & Ekroos, Ari, 2019. "A supra-national TSO to enhance offshore wind power development in the Baltic Sea? A legal and regulatory analysis," Energy Policy, Elsevier, vol. 128(C), pages 775-782.
    17. Byrnes, Liam & Brown, Colin & Foster, John & Wagner, Liam D., 2013. "Australian renewable energy policy: Barriers and challenges," Renewable Energy, Elsevier, vol. 60(C), pages 711-721.
    18. Kim, Soullam & Lee, Yuhwa & Moon, Hak-Ryong, 2018. "Siting criteria and feasibility analysis for PV power generation projects using road facilities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3061-3069.
    19. Allik, Alo & Märss, Maido & Uiga, Jaanus & Annuk, Andres, 2016. "Optimization of the inverter size for grid-connected residential wind energy systems with peak shaving," Renewable Energy, Elsevier, vol. 99(C), pages 1116-1125.
    20. Christoffer Hallgren & Johan Arnqvist & Stefan Ivanell & Heiner Körnich & Ville Vakkari & Erik Sahlée, 2020. "Looking for an Offshore Low-Level Jet Champion among Recent Reanalyses: A Tight Race over the Baltic Sea," Energies, MDPI, vol. 13(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:6:p:1333-1341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.