IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp387-394.html
   My bibliography  Save this article

Inter-row spacing calculation in photovoltaic fields - A new approach

Author

Listed:
  • Appelbaum, Joseph
  • Aronescu, Avi

Abstract

The inter-row spacing in photovoltaic (PV) systems is an important design parameter affecting the inter-row shading and the diffuse radiation masking losses and hence, reducing the electric output of the PV system. Decreasing these losses are possible by increasing the inter-row spacing however, on the expense of land, cabling cost and associated system losses. As shading losses in PV systems was the prominent concern, many articles are published on this topic, including publications on row spacing. Less attention was paid in the past to masking losses, constituting a larger component of radiation losses. The present study shows that masking losses exceed by far the shading losses for both isotropic and anisotropic diffuse radiation models. Consequently, this study proposes to use an acceptable level of masking losses as a criterion for the spacing between the PV rows. Assuming an yearly acceptable 1.5% masking losses, for a given PV system design for example, the inter-row spacing is 1.344m, the shading losses are 0.309% and the global losses are 1.809%, at latitude 320N.

Suggested Citation

  • Appelbaum, Joseph & Aronescu, Avi, 2022. "Inter-row spacing calculation in photovoltaic fields - A new approach," Renewable Energy, Elsevier, vol. 200(C), pages 387-394.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:387-394
    DOI: 10.1016/j.renene.2022.09.100
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122014586
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.09.100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saeed Swaid & Joseph Appelbaum & Avi Aronescu, 2021. "Shading and Masking of PV Collectors on Horizontal and Sloped Planes Facing South and North—A Comparative Study," Energies, MDPI, vol. 14(13), pages 1-15, June.
    2. Copper, J.K. & Sproul, A.B. & Bruce, A.G., 2016. "A method to calculate array spacing and potential system size of photovoltaic arrays in the urban environment using vector analysis," Applied Energy, Elsevier, vol. 161(C), pages 11-23.
    3. Bakhshi, Reza & Sadeh, Javad & Mosaddegh, Hamid-Reza, 2014. "Optimal economic designing of grid-connected photovoltaic systems with multiple inverters using linear and nonlinear module models based on Genetic Algorithm," Renewable Energy, Elsevier, vol. 72(C), pages 386-394.
    4. Kornelakis, Aris & Marinakis, Yannis, 2010. "Contribution for optimal sizing of grid-connected PV-systems using PSO," Renewable Energy, Elsevier, vol. 35(6), pages 1333-1341.
    5. Castellano, Nuria Novas & Gázquez Parra, José Antonio & Valls-Guirado, Juan & Manzano-Agugliaro, Francisco, 2015. "Optimal displacement of photovoltaic array’s rows using a novel shading model," Applied Energy, Elsevier, vol. 144(C), pages 1-9.
    6. Aronescu, A. & Appelbaum, J., 2017. "Design optimization of photovoltaic solar fields-insight and methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 882-893.
    7. Perez-Gallardo, J.R. & Azzaro-Pantel, C. & Astier, S. & Domenech, S. & Aguilar-Lasserre, A., 2014. "Ecodesign of photovoltaic grid-connected systems," Renewable Energy, Elsevier, vol. 64(C), pages 82-97.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodrigo, Pedro M. & Mouhib, Elmehdi & Fernandez, Eduardo F. & Almonacid, Florencia & Rosas-Caro, Julio C., 2024. "Comprehensive ground coverage analysis of large-scale fixed-tilt bifacial photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rodrigo, Pedro M. & Mouhib, Elmehdi & Fernandez, Eduardo F. & Almonacid, Florencia & Rosas-Caro, Julio C., 2024. "Comprehensive ground coverage analysis of large-scale fixed-tilt bifacial photovoltaic plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Aronescu, A. & Appelbaum, J., 2017. "Design optimization of photovoltaic solar fields-insight and methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 882-893.
    3. Mayer, Martin János, 2022. "Impact of the tilt angle, inverter sizing factor and row spacing on the photovoltaic power forecast accuracy," Applied Energy, Elsevier, vol. 323(C).
    4. Avi Aronescu & Joseph Appelbaum, 2023. "The Effect of Collector Azimuth on Inter-Row Shading in Photovoltaic Fields—A Comprehensive Point of View," Energies, MDPI, vol. 16(13), pages 1-15, June.
    5. Nima Narjabadifam & Mohammed Al-Saffar & Yongquan Zhang & Joseph Nofech & Asdrubal Cheng Cen & Hadia Awad & Michael Versteege & Mustafa Gül, 2022. "Framework for Mapping and Optimizing the Solar Rooftop Potential of Buildings in Urban Systems," Energies, MDPI, vol. 15(5), pages 1-32, February.
    6. Tekai Eddine Khalil Zidane & Mohd Rafi Adzman & Mohammad Faridun Naim Tajuddin & Samila Mat Zali & Ali Durusu & Saad Mekhilef, 2020. "Optimal Design of Photovoltaic Power Plant Using Hybrid Optimisation: A Case of South Algeria," Energies, MDPI, vol. 13(11), pages 1-28, June.
    7. Rezk, Hegazy & AL-Oran, Mazen & Gomaa, Mohamed R. & Tolba, Mohamed A. & Fathy, Ahmed & Abdelkareem, Mohammad Ali & Olabi, A.G. & El-Sayed, Abou Hashema M., 2019. "A novel statistical performance evaluation of most modern optimization-based global MPPT techniques for partially shaded PV system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    8. Juaidi, Adel & Montoya, Francisco G. & Ibrik, Imad H. & Manzano-Agugliaro, Francisco, 2016. "An overview of renewable energy potential in Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 943-960.
    9. Wang, H.X. & Muñoz-García, M.A. & Moreda, G.P. & Alonso-García, M.C., 2018. "Optimum inverter sizing of grid-connected photovoltaic systems based on energetic and economic considerations," Renewable Energy, Elsevier, vol. 118(C), pages 709-717.
    10. Al-Sulttani, Ali O. & Ahsan, Amimul & Hanoon, Ammar N. & Rahman, A. & Daud, N.N.N. & Idrus, S., 2017. "Hourly yield prediction of a double-slope solar still hybrid with rubber scrapers in low-latitude areas based on the particle swarm optimization technique," Applied Energy, Elsevier, vol. 203(C), pages 280-303.
    11. Hernández-Escobedo, Q. & Fernández-García, A. & Manzano-Agugliaro, F., 2017. "Solar resource assessment for rural electrification and industrial development in the Yucatan Peninsula (Mexico)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1550-1561.
    12. Davoudkhani, Iraj Faraji & Dejamkhooy, Abdolmajid & Nowdeh, Saber Arabi, 2023. "A novel cloud-based framework for optimal design of stand-alone hybrid renewable energy system considering uncertainty and battery aging," Applied Energy, Elsevier, vol. 344(C).
    13. Yilmaz, Saban & Dincer, Furkan, 2017. "Impact of inverter capacity on the performance in large-scale photovoltaic power plants – A case study for Gainesville, Florida," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 15-23.
    14. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    15. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst, 2019. "Geographical optimization of variable renewable energy capacity in China using modern portfolio theory," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Ullah, Hayat & Kamal, Ijlal & Ali, Ayesha & Arshad, Naveed, 2018. "Investor focused placement and sizing of photovoltaic grid-connected systems in Pakistan," Renewable Energy, Elsevier, vol. 121(C), pages 460-473.
    17. Youssef, Ayman & El-Telbany, Mohammed & Zekry, Abdelhalim, 2017. "The role of artificial intelligence in photo-voltaic systems design and control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 72-79.
    18. Ramez Abdallah & Adel Juaidi & Salameh Abdel-Fattah & Mahmoud Qadi & Montaser Shadid & Aiman Albatayneh & Hüseyin Çamur & Amos García-Cruz & Francisco Manzano-Agugliaro, 2022. "The Effects of Soiling and Frequency of Optimal Cleaning of PV Panels in Palestine," Energies, MDPI, vol. 15(12), pages 1-18, June.
    19. Sameh Monna & Adel Juaidi & Ramez Abdallah & Mohammed Itma, 2020. "A Comparative Assessment for the Potential Energy Production from PV Installation on Residential Buildings," Sustainability, MDPI, vol. 12(24), pages 1-17, December.
    20. Arsenio Barbón & Luis Bayón & Guzmán Díaz & Carlos A. Silva, 2022. "Investigation of the Effect of Albedo in Photovoltaic Systems for Urban Applications: Case Study for Spain," Energies, MDPI, vol. 15(21), pages 1-20, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:387-394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.