IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i5p997-1009.html
   My bibliography  Save this article

A design methodology for cross flow water turbines

Author

Listed:
  • Zanette, J.
  • Imbault, D.
  • Tourabi, A.

Abstract

This contribution deals with the design of cross flow water turbines. The mechanical stress sustained by the blades depends on the basic geometrical specifications of the cross flow water turbine, its rotational speed, the exact geometry of the blades and the velocity of the upstream water current. During the operation, the blades are submitted to severe cyclic loadings generated by pressure field's variation as function of angular position. This paper proposes a simplified design methodology for structural analysis of cross flow water turbine blades, with quite low computational time. A new trapezoidal-bladed turbine obtained from this method promises to be more efficient than the classical designs. Its most distinctive characteristic is a variable profiled cross-section area, which should significantly reduce the intensity of cyclic loadings in the material and improve the turbine's durability. The advantages of this new geometry will be compared with three other geometries based on NACA0018 hydrofoil.

Suggested Citation

  • Zanette, J. & Imbault, D. & Tourabi, A., 2010. "A design methodology for cross flow water turbines," Renewable Energy, Elsevier, vol. 35(5), pages 997-1009.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:5:p:997-1009
    DOI: 10.1016/j.renene.2009.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109004091
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ponta, Fernando L. & Jacovkis, Pablo M., 2001. "A vortex model for Darrieus turbine using finite element techniques," Renewable Energy, Elsevier, vol. 24(1), pages 1-18.
    2. Antheaume, Sylvain & Maître, Thierry & Achard, Jean-Luc, 2008. "Hydraulic Darrieus turbines efficiency for free fluid flow conditions versus power farms conditions," Renewable Energy, Elsevier, vol. 33(10), pages 2186-2198.
    3. Charlier, Roger H., 2003. "A "sleeper" awakes: tidal current power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(6), pages 515-529, December.
    4. Schönborn, Alessandro & Chantzidakis, Matthew, 2007. "Development of a hydraulic control mechanism for cyclic pitch marine current turbines," Renewable Energy, Elsevier, vol. 32(4), pages 662-679.
    5. Islam, Mazharul & Ting, David S.-K. & Fartaj, Amir, 2008. "Aerodynamic models for Darrieus-type straight-bladed vertical axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(4), pages 1087-1109, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the transverse horizontal axis water turbine: Part 2," Renewable Energy, Elsevier, vol. 59(C), pages 141-149.
    2. Zhang, Mengjie & Wu, Qin & Wang, Guoyu & Huang, Biao & Fu, Xiaoying & Chen, Jie, 2020. "The flow regime and hydrodynamic performance for a pitching hydrofoil," Renewable Energy, Elsevier, vol. 150(C), pages 412-427.
    3. Guney, Mukrimin Sevket, 2011. "Evaluation and measures to increase performance coefficient of hydrokinetic turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3669-3675.
    4. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    5. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    6. Vallet, Maria & Munteanu, Iulian & Bratcu, Antoneta Iuliana & Bacha, Seddik & Roye, Daniel, 2012. "Synchronized control of cross-flow-water-turbine-based twin towers," Renewable Energy, Elsevier, vol. 48(C), pages 382-391.
    7. Chen, Falin, 2010. "Kuroshio power plant development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2655-2668, December.
    8. Behrouzi, Fatemeh & Nakisa, Mehdi & Maimun, Adi & Ahmed, Yasser M., 2016. "Global renewable energy and its potential in Malaysia: A review of Hydrokinetic turbine technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1270-1281.
    9. Paillard, B. & Hauville, F. & Astolfi, J.A., 2013. "Simulating variable pitch crossflow water turbines: A coupled unsteady ONERA-EDLIN model and streamtube model," Renewable Energy, Elsevier, vol. 52(C), pages 209-217.
    10. McAdam, R.A. & Houlsby, G.T. & Oldfield, M.L.G., 2013. "Experimental measurements of the hydrodynamic performance and structural loading of the Transverse Horizontal Axis Water Turbine: Part 1," Renewable Energy, Elsevier, vol. 59(C), pages 105-114.
    11. Chen, Long & Lam, Wei-Haur, 2015. "A review of survivability and remedial actions of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 891-900.
    12. Endashaw Tesfaye Woldemariam & Hirpa G. Lemu & G. Gary Wang, 2018. "CFD-Driven Valve Shape Optimization for Performance Improvement of a Micro Cross-Flow Turbine," Energies, MDPI, vol. 11(1), pages 1-18, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Performance enhancement of a Darrieus hydrokinetic turbine with the blocking of a specific flow region for optimum use of hydropower," Renewable Energy, Elsevier, vol. 135(C), pages 1144-1156.
    2. Li, Ye & Calisal, Sander M., 2010. "Three-dimensional effects and arm effects on modeling a vertical axis tidal current turbine," Renewable Energy, Elsevier, vol. 35(10), pages 2325-2334.
    3. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao, 2015. "The effect of the opening ratio and location on the performance of a novel vertical axis Darrieus turbine," Energy, Elsevier, vol. 89(C), pages 819-834.
    4. Rourke, Fergal O. & Boyle, Fergal & Reynolds, Anthony, 2010. "Marine current energy devices: Current status and possible future applications in Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1026-1036, April.
    5. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    6. Borg, Michael & Shires, Andrew & Collu, Maurizio, 2014. "Offshore floating vertical axis wind turbines, dynamics modelling state of the art. part I: Aerodynamics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1214-1225.
    7. Malipeddi, A.R. & Chatterjee, D., 2012. "Influence of duct geometry on the performance of Darrieus hydroturbine," Renewable Energy, Elsevier, vol. 43(C), pages 292-300.
    8. Aslam Bhutta, Muhammad Mahmood & Hayat, Nasir & Farooq, Ahmed Uzair & Ali, Zain & Jamil, Sh. Rehan & Hussain, Zahid, 2012. "Vertical axis wind turbine – A review of various configurations and design techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 1926-1939.
    9. Hand, Brian & Kelly, Ger & Cashman, Andrew, 2021. "Aerodynamic design and performance parameters of a lift-type vertical axis wind turbine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    10. Chen, J. & Yang, H.X. & Liu, C.P. & Lau, C.H. & Lo, M., 2013. "A novel vertical axis water turbine for power generation from water pipelines," Energy, Elsevier, vol. 54(C), pages 184-193.
    11. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    12. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.
    13. Mohamed, M.H., 2013. "Impacts of solidity and hybrid system in small wind turbines performance," Energy, Elsevier, vol. 57(C), pages 495-504.
    14. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    15. Saeidi, Davood & Sedaghat, Ahmad & Alamdari, Pourya & Alemrajabi, Ali Akbar, 2013. "Aerodynamic design and economical evaluation of site specific small vertical axis wind turbines," Applied Energy, Elsevier, vol. 101(C), pages 765-775.
    16. Vallet, Maria & Munteanu, Iulian & Bratcu, Antoneta Iuliana & Bacha, Seddik & Roye, Daniel, 2012. "Synchronized control of cross-flow-water-turbine-based twin towers," Renewable Energy, Elsevier, vol. 48(C), pages 382-391.
    17. Andrea Alaimo & Antonio Esposito & Antonio Messineo & Calogero Orlando & Davide Tumino, 2015. "3D CFD Analysis of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 8(4), pages 1-21, April.
    18. Balduzzi, Francesco & Bianchini, Alessandro & Ferrara, Giovanni & Ferrari, Lorenzo, 2016. "Dimensionless numbers for the assessment of mesh and timestep requirements in CFD simulations of Darrieus wind turbines," Energy, Elsevier, vol. 97(C), pages 246-261.
    19. Goundar, Jai N. & Ahmed, M. Rafiuddin, 2013. "Design of a horizontal axis tidal current turbine," Applied Energy, Elsevier, vol. 111(C), pages 161-174.
    20. Eva Segura & Rafael Morales & José A. Somolinos, 2019. "Increasing the Competitiveness of Tidal Systems by Means of the Improvement of Installation and Maintenance Maneuvers in First Generation Tidal Energy Converters—An Economic Argumentation," Energies, MDPI, vol. 12(13), pages 1-27, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:5:p:997-1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.