IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v35y2010i10p2307-2315.html
   My bibliography  Save this article

Optimum hybrid photovoltaic-based solution for remote telecommunication stations

Author

Listed:
  • Kaldellis, J.K.

Abstract

The vast growth of the mobile telecommunication (T/C) sector during the recent years has led to the extension of the respective networks even to the most remote areas. Many of these areas, however, often lack electricity grid supply and as a result installation of energy autonomous T/C stations, usually based on diesel-oil electricity generation, is essential. On the other hand, technological developments and considerable procurement cost reduction of photovoltaics (PVs) encourage also the use of PV stand-alone configurations, as an alternative energy solution for the operation of these remote T/C stations. Instead of using PV-battery configurations alone, contribution of a diesel engine in terms of moderate fuel consumption may downsize the system and improve its economic performance. In this context, an optimum sizing methodology currently developed is used to determine the dimensions of such an autonomous hybrid system, based on the criterion of minimum initial cost. The developed methodology is accordingly applied to a representative Greek area of high solar potential under different scenarios of fuel consumption and panels’ tilt angle. From the results obtained, the proposed hybrid power station appears to be one of the most attractive energy solutions for the support of remote T/C stations, providing increased levels of reliability and presenting low maintenance needs.

Suggested Citation

  • Kaldellis, J.K., 2010. "Optimum hybrid photovoltaic-based solution for remote telecommunication stations," Renewable Energy, Elsevier, vol. 35(10), pages 2307-2315.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:10:p:2307-2315
    DOI: 10.1016/j.renene.2010.03.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148110001461
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2010.03.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durisch, W. & Leutenegger, S. & Tille, D., 1998. "Comparison of small inverters for grid-independent photovoltaic systems," Renewable Energy, Elsevier, vol. 15(1), pages 585-589.
    2. Kaldellis, J.K. & Koronakis, P. & Kavadias, K., 2004. "Energy balance analysis of a stand-alone photovoltaic system, including variable system reliability impact," Renewable Energy, Elsevier, vol. 29(7), pages 1161-1180.
    3. Salas, V. & Olías, E., 2009. "Overview of the state of technique for PV inverters used in low voltage grid-connected PV systems: Inverters below 10Â kW," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1541-1550, August.
    4. Kaldellis, J.K. & Zafirakis, D. & Kaldelli, E.L. & Kavadias, K., 2009. "Cost benefit analysis of a photovoltaic-energy storage electrification solution for remote islands," Renewable Energy, Elsevier, vol. 34(5), pages 1299-1311.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. San Martín, Idoia & Berrueta, Alberto & Sanchis, Pablo & Ursúa, Alfredo, 2018. "Methodology for sizing stand-alone hybrid systems: A case study of a traffic control system," Energy, Elsevier, vol. 153(C), pages 870-881.
    2. Kaldellis, John & Kavadias, Kosmas & Zafirakis, Dimitrios, 2012. "Experimental validation of the optimum photovoltaic panels' tilt angle for remote consumers," Renewable Energy, Elsevier, vol. 46(C), pages 179-191.
    3. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    4. Kaldellis, John & Zafirakis, Dimitrios & Kavadias, Kosmas & Kondili, Emilia, 2012. "Optimum PV-diesel hybrid systems for remote consumers of the Greek territory," Applied Energy, Elsevier, vol. 97(C), pages 61-67.
    5. Shane Phelan & Paula Meehan & Stephen Daniels, 2013. "Using Atmospheric Pressure Tendency to Optimise Battery Charging in Off-Grid Hybrid Wind-Diesel Systems for Telecoms," Energies, MDPI, vol. 6(6), pages 1-20, June.
    6. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization," Renewable Energy, Elsevier, vol. 63(C), pages 194-204.
    7. Hafez, Omar & Bhattacharya, Kankar, 2012. "Optimal planning and design of a renewable energy based supply system for microgrids," Renewable Energy, Elsevier, vol. 45(C), pages 7-15.
    8. Mohammed H. Alsharif & Jeong Kim, 2016. "Hybrid Off-Grid SPV/WTG Power System for Remote Cellular Base Stations Towards Green and Sustainable Cellular Networks in South Korea," Energies, MDPI, vol. 10(1), pages 1-23, December.
    9. Mohammed H. Alsharif & Jeong Kim & Jin Hong Kim, 2017. "Green and Sustainable Cellular Base Stations: An Overview and Future Research Directions," Energies, MDPI, vol. 10(5), pages 1-27, April.
    10. Mohammed H. Alsharif & Jeong Kim, 2016. "Optimal Solar Power System for Remote Telecommunication Base Stations: A Case Study Based on the Characteristics of South Korea’s Solar Radiation Exposure," Sustainability, MDPI, vol. 8(9), pages 1-21, September.
    11. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    12. Mohammed W. Baidas & Rola W. Hasaneya & Rashad M. Kamel & Sultan Sh. Alanzi, 2021. "Solar-Powered Cellular Base Stations in Kuwait: A Case Study," Energies, MDPI, vol. 14(22), pages 1-26, November.
    13. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "A hybrid tool to combine multi-objective optimization and multi-criterion decision making in designing standalone hybrid energy systems," Applied Energy, Elsevier, vol. 107(C), pages 412-425.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    2. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2010. "Energy pay-back period analysis of stand-alone photovoltaic systems," Renewable Energy, Elsevier, vol. 35(7), pages 1444-1454.
    3. Olatomiwa, Lanre & Mekhilef, Saad & Huda, A.S.N. & Ohunakin, Olayinka S., 2015. "Economic evaluation of hybrid energy systems for rural electrification in six geo-political zones of Nigeria," Renewable Energy, Elsevier, vol. 83(C), pages 435-446.
    4. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2012. "Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers," Energy Policy, Elsevier, vol. 42(C), pages 105-117.
    5. Papapostolou, Christiana M. & Kondili, Emilia M. & Zafirakis, Dimitris P. & Tzanes, Georgios T., 2020. "Sustainable water supply systems for the islands: The integration with the energy problem," Renewable Energy, Elsevier, vol. 146(C), pages 2577-2588.
    6. Jana, Joydip & Saha, Hiranmay & Das Bhattacharya, Konika, 2017. "A review of inverter topologies for single-phase grid-connected photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1256-1270.
    7. Zhou, P. & Jin, R.Y. & Fan, L.W., 2016. "Reliability and economic evaluation of power system with renewables: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 537-547.
    8. Mirhassani, SeyedMohsen & Ong, Hwai Chyuan & Chong, W.T. & Leong, K.Y., 2015. "Advances and challenges in grid tied photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 121-131.
    9. Paliwal, Priyanka & Patidar, N.P. & Nema, R.K., 2014. "Determination of reliability constrained optimal resource mix for an autonomous hybrid power system using Particle Swarm Optimization," Renewable Energy, Elsevier, vol. 63(C), pages 194-204.
    10. Xin Li & Konstantinos J. Chalvatzis & Phedeas Stephanides, 2018. "Innovative Energy Islands: Life-Cycle Cost-Benefit Analysis for Battery Energy Storage," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
    11. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    12. BoroumandJazi, G. & Saidur, R. & Rismanchi, B. & Mekhilef, S., 2012. "A review on the relation between the energy and exergy efficiency analysis and the technical characteristic of the renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3131-3135.
    13. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic optimization based approach for energy management of a stand-alone integrated renewable energy system for remote areas of India," Energy, Elsevier, vol. 94(C), pages 138-156.
    14. Meschede, Henning, 2019. "Increased utilisation of renewable energies through demand response in the water supply sector – A case study," Energy, Elsevier, vol. 175(C), pages 810-817.
    15. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    16. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Salas, V. & Suponthana, W. & Salas, R.A., 2015. "Overview of the off-grid photovoltaic diesel batteries systems with AC loads," Applied Energy, Elsevier, vol. 157(C), pages 195-216.
    18. Rampinelli, Giuliano A. & Gasparin, Fabiano P. & Bühler, Alexandre J. & Krenzinger, Arno & Chenlo Romero, Faustino, 2015. "Assessment and mathematical modeling of energy quality parameters of grid connected photovoltaic inverters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 133-141.
    19. Castagneto Gissey, Giorgio & Zakeri, Behnam & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Evaluating consumer investments in distributed energy technologies," Energy Policy, Elsevier, vol. 149(C).
    20. Strantzali, Eleni & Aravossis, Konstantinos, 2016. "Decision making in renewable energy investments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 885-898.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:10:p:2307-2315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.