IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i4p1024-1032.html
   My bibliography  Save this article

Wavelet cross-correlation analysis of wind speed series generated by ANN based models

Author

Listed:
  • Turbelin, Grégory
  • Ngae, Pierre
  • Grignon, Michel

Abstract

To obtain, over medium term periods, wind speed time series on a site, located in the southern part of the Paris region (France), where long recording are not available, but where nearby meteorological stations provide large series of data, use was made of ANN based models. The performance of these models have been evaluated by using several commonly used statistics such as average absolute error, root mean square error, normalized mean square error, and correlation coefficient. Such global criteria are good indicators of the “robustness” of the models but are unable to provide useful information about their “effectiveness” in accurately generating wind speed fluctuations over a wide range of scales. Therefore a complementary wavelet cross coherence analysis has been performed. Wavelet cross coherence, wavelet cross-correlation and spectral wavelet cross-correlation coefficients, have been calculated and displayed as functions of the equivalent Fourier period. These coefficients provide quantitative measures of the scale-dependence of the model performance. In particular the spectral wavelet cross coherence coefficient can be used to have a rapid and efficient identification of the validity range of the models. The results show that the ANN models employed in this study are only effective in computing large-scale fluctuations of large amplitude. To obtain a more representative time series, with much higher resolution, small-scale fluctuations have to be simulated by a superimposed statistical model. By combining ANN and statistical models, both the high and the low-frequency segments of the wind velocity spectra can be simulated, over a range of several hours, at the target site.

Suggested Citation

  • Turbelin, Grégory & Ngae, Pierre & Grignon, Michel, 2009. "Wavelet cross-correlation analysis of wind speed series generated by ANN based models," Renewable Energy, Elsevier, vol. 34(4), pages 1024-1032.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:4:p:1024-1032
    DOI: 10.1016/j.renene.2008.08.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148108003029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2008.08.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sfetsos, A., 2002. "A novel approach for the forecasting of mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 27(2), pages 163-174.
    2. Sfetsos, A., 2000. "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 21(1), pages 23-35.
    3. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chang, Tian-Pau & Liu, Feng-Jiao & Ko, Hong-Hsi & Huang, Ming-Chao, 2017. "Oscillation characteristic study of wind speed, global solar radiation and air temperature using wavelet analysis," Applied Energy, Elsevier, vol. 190(C), pages 650-657.
    2. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    3. Silvo Dajčman, 2013. "Interdependence Between Some Major European Stock Markets - A Wavelet Lead/Lag Analysis," Prague Economic Papers, Prague University of Economics and Business, vol. 2013(1), pages 28-49.
    4. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    5. De Giorgi, Maria Grazia & Ficarella, Antonio & Tarantino, Marco, 2011. "Assessment of the benefits of numerical weather predictions in wind power forecasting based on statistical methods," Energy, Elsevier, vol. 36(7), pages 3968-3978.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    2. Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
    3. López, P. & Velo, R. & Maseda, F., 2008. "Effect of direction on wind speed estimation in complex terrain using neural networks," Renewable Energy, Elsevier, vol. 33(10), pages 2266-2272.
    4. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    5. Akçay, Hüseyin & Filik, Tansu, 2017. "Short-term wind speed forecasting by spectral analysis from long-term observations with missing values," Applied Energy, Elsevier, vol. 191(C), pages 653-662.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Jiani Heng & Chen Wang & Xuejing Zhao & Liye Xiao, 2016. "Research and Application Based on Adaptive Boosting Strategy and Modified CGFPA Algorithm: A Case Study for Wind Speed Forecasting," Sustainability, MDPI, vol. 8(3), pages 1-25, March.
    8. Cao, Qing & Ewing, Bradley T. & Thompson, Mark A., 2012. "Forecasting wind speed with recurrent neural networks," European Journal of Operational Research, Elsevier, vol. 221(1), pages 148-154.
    9. Yuan, Shengxi & Kocaman, Ayse Selin & Modi, Vijay, 2017. "Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente," Renewable Energy, Elsevier, vol. 105(C), pages 167-174.
    10. Bouzgou, Hassen & Benoudjit, Nabil, 2011. "Multiple architecture system for wind speed prediction," Applied Energy, Elsevier, vol. 88(7), pages 2463-2471, July.
    11. Masseran, Nurulkamal, 2016. "Modeling the fluctuations of wind speed data by considering their mean and volatility effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 777-784.
    12. Guo, Zhenhai & Zhao, Jing & Zhang, Wenyu & Wang, Jianzhou, 2011. "A corrected hybrid approach for wind speed prediction in Hexi Corridor of China," Energy, Elsevier, vol. 36(3), pages 1668-1679.
    13. Liu, Hui & Chen, Chao & Tian, Hong-qi & Li, Yan-fei, 2012. "A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks," Renewable Energy, Elsevier, vol. 48(C), pages 545-556.
    14. Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
    15. Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
    16. A. Alexandridis & A. Zapranis, 2013. "Wind Derivatives: Modeling and Pricing," Computational Economics, Springer;Society for Computational Economics, vol. 41(3), pages 299-326, March.
    17. Lei, Ma & Shiyan, Luan & Chuanwen, Jiang & Hongling, Liu & Yan, Zhang, 2009. "A review on the forecasting of wind speed and generated power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 915-920, May.
    18. Flores, P. & Tapia, A. & Tapia, G., 2005. "Application of a control algorithm for wind speed prediction and active power generation," Renewable Energy, Elsevier, vol. 30(4), pages 523-536.
    19. Abdel-Aal, R.E. & Elhadidy, M.A. & Shaahid, S.M., 2009. "Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks," Renewable Energy, Elsevier, vol. 34(7), pages 1686-1699.
    20. José Carlos Palomares-Salas & Agustín Agüera-Pérez & Juan José González de la Rosa & José María Sierra-Fernández & Antonio Moreno-Muñoz, 2013. "Exogenous Measurements from Basic Meteorological Stations for Wind Speed Forecasting," Energies, MDPI, vol. 6(11), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:4:p:1024-1032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.