IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v30y2005i4p523-536.html
   My bibliography  Save this article

Application of a control algorithm for wind speed prediction and active power generation

Author

Listed:
  • Flores, P.
  • Tapia, A.
  • Tapia, G.

Abstract

The main objective of the work described in this paper is to offer a new method of prediction of wind speeds, whilst aware that the method develops predictions in time-scales that can vary from a few minutes to an hour. This is needed because wind energy generation is increasing its participation in energy distribution and has to compete with other energy sources that are not so variable in terms of generated active power. It is important to consider that active power demand can vary quite rapidly and different sources of electricity generation must be available. In the case of wind energy, wind speed predictions are an important tool to help producers make the best decisions when selling the energy produced. These decisions are crucial in the electricity market, because of the economic benefits for producers and consequently their profitability, depends on them. The algorithm presented in this paper is based on an artificial neural network and two types of wind data have been used to test the algorithm. In the first, data was collected from a not very windy area; in the second data was collected from a real wind farm located in Navarre (North of Spain), and the values vary from very low to high speeds. Although the algorithm was not tested with typical wind speed values measured on offshore wind farm applications, it can be concluded from the first set of results presented in this paper that the algorithm is valid for estimating average speed values. Finally, a generic algorithm for the active power generation of a wind farm is presented.

Suggested Citation

  • Flores, P. & Tapia, A. & Tapia, G., 2005. "Application of a control algorithm for wind speed prediction and active power generation," Renewable Energy, Elsevier, vol. 30(4), pages 523-536.
  • Handle: RePEc:eee:renene:v:30:y:2005:i:4:p:523-536
    DOI: 10.1016/j.renene.2004.07.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148104002915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2004.07.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sfetsos, A., 2002. "A novel approach for the forecasting of mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 27(2), pages 163-174.
    2. Tapia, A. & Tapia, G. & Ostolaza, J.X., 2004. "Reactive power control of wind farms for voltage control applications," Renewable Energy, Elsevier, vol. 29(3), pages 377-392.
    3. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata, Rasit, 2015. "Artificial neural networks applications in wind energy systems: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 534-562.
    2. Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
    3. Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
    4. López, P. & Velo, R. & Maseda, F., 2008. "Effect of direction on wind speed estimation in complex terrain using neural networks," Renewable Energy, Elsevier, vol. 33(10), pages 2266-2272.
    5. Soares, Orlando & Gonçalves, Henrique & Martins, António & Carvalho, Adriano, 2010. "Nonlinear control of the doubly-fed induction generator in wind power systems," Renewable Energy, Elsevier, vol. 35(8), pages 1662-1670.
    6. Turbelin, Grégory & Ngae, Pierre & Grignon, Michel, 2009. "Wavelet cross-correlation analysis of wind speed series generated by ANN based models," Renewable Energy, Elsevier, vol. 34(4), pages 1024-1032.
    7. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Hemmatabady, Hoofar & Welsch, Bastian & Formhals, Julian & Sass, Ingo, 2022. "AI-based enviro-economic optimization of solar-coupled and standalone geothermal systems for heating and cooling," Applied Energy, Elsevier, vol. 311(C).
    9. Selimefendigil, Fatih & Öztop, Hakan F., 2020. "Identification of pulsating flow effects with CNT nanoparticles on the performance enhancements of thermoelectric generator (TEG) module in renewable energy applications," Renewable Energy, Elsevier, vol. 162(C), pages 1076-1086.
    10. Rosiek, S. & Batlles, F.J., 2010. "Modelling a solar-assisted air-conditioning system installed in CIESOL building using an artificial neural network," Renewable Energy, Elsevier, vol. 35(12), pages 2894-2901.
    11. Buratti, Cinzia & Barelli, Linda & Moretti, Elisa, 2012. "Application of artificial neural network to predict thermal transmittance of wooden windows," Applied Energy, Elsevier, vol. 98(C), pages 425-432.
    12. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    13. Fernández, R.D. & Mantz, R.J. & Battaiotto, P.E., 2007. "Impact of wind farms on a power system. An eigenvalue analysis approach," Renewable Energy, Elsevier, vol. 32(10), pages 1676-1688.
    14. Pasta, Edoardo & Faedo, Nicolás & Mattiazzo, Giuliana & Ringwood, John V., 2023. "Towards data-driven and data-based control of wave energy systems: Classification, overview, and critical assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    15. Rodriguez-Hernandez, O. & Jaramillo, O.A. & Andaverde, J.A. & del Río, J.A., 2013. "Analysis about sampling, uncertainties and selection of a reliable probabilistic model of wind speed data used on resource assessment," Renewable Energy, Elsevier, vol. 50(C), pages 244-252.
    16. Koo, Junmo & Han, Gwon Deok & Choi, Hyung Jong & Shim, Joon Hyung, 2015. "Wind-speed prediction and analysis based on geological and distance variables using an artificial neural network: A case study in South Korea," Energy, Elsevier, vol. 93(P2), pages 1296-1302.
    17. Samet, Haidar & Hashemi, Farid & Ghanbari, Teymoor, 2015. "Minimum non detection zone for islanding detection using an optimal Artificial Neural Network algorithm based on PSO," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1-18.
    18. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.
    19. Fadare, D.A., 2009. "Modelling of solar energy potential in Nigeria using an artificial neural network model," Applied Energy, Elsevier, vol. 86(9), pages 1410-1422, September.
    20. Mellit, A. & Benghanem, M. & Arab, A. Hadj & Guessoum, A., 2005. "An adaptive artificial neural network model for sizing stand-alone photovoltaic systems: application for isolated sites in Algeria," Renewable Energy, Elsevier, vol. 30(10), pages 1501-1524.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:30:y:2005:i:4:p:523-536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.