IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v34y2009i12p2597-2606.html
   My bibliography  Save this article

Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system

Author

Listed:
  • Syafaruddin,
  • Karatepe, Engin
  • Hiyama, Takashi

Abstract

It is crucial to improve the photovoltaic (PV) system efficiency and to develop the reliability of PV generation control systems. There are two ways to increase the efficiency of PV power generation system. The first is to develop materials offering high conversion efficiency at low cost. The second is to operate PV systems optimally. However, the PV system can be optimally operated only at a specific output voltage and its output power fluctuates under intermittent weather conditions. Moreover, it is very difficult to test the performance of a maximum-power point tracking (MPPT) controller under the same weather condition during the development process and also the field testing is costly and time consuming. This paper presents a novel real-time simulation technique of PV generation system by using dSPACE real-time interface system. The proposed system includes Artificial Neural Network (ANN) and fuzzy logic controller scheme using polar information. This type of fuzzy logic rules is implemented for the first time to operate the PV module at optimum operating point. ANN is utilized to determine the optimum operating voltage for monocrystalline silicon, thin-film cadmium telluride and triple junction amorphous silicon solar cells. The verification of availability and stability of the proposed system through the real-time simulator shows that the proposed system can respond accurately for different scenarios and different solar cell technologies.

Suggested Citation

  • Syafaruddin, & Karatepe, Engin & Hiyama, Takashi, 2009. "Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system," Renewable Energy, Elsevier, vol. 34(12), pages 2597-2606.
  • Handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2597-2606
    DOI: 10.1016/j.renene.2009.04.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148109001876
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2009.04.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tafticht, T. & Agbossou, K. & Doumbia, M.L. & Chériti, A., 2008. "An improved maximum power point tracking method for photovoltaic systems," Renewable Energy, Elsevier, vol. 33(7), pages 1508-1516.
    2. Sukamongkol, Y. & Chungpaibulpatana, S. & Ongsakul, W., 2002. "A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads," Renewable Energy, Elsevier, vol. 27(2), pages 237-258.
    3. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    4. Gabler, Hansjörg, 1998. "Autonomous power supply with photovoltaics: Photovoltaics for rural electrification - reality and vision," Renewable Energy, Elsevier, vol. 15(1), pages 512-518.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danandeh, M.A. & Mousavi G., S.M., 2018. "Comparative and comprehensive review of maximum power point tracking methods for PV cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2743-2767.
    2. Maatallah, Taher & El Alimi, Souheil & Nassrallah, Sassi Ben, 2011. "Performance modeling and investigation of fixed, single and dual-axis tracking photovoltaic panel in Monastir city, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4053-4066.
    3. Mellit, Adel & Kalogirou, Soteris A., 2014. "MPPT-based artificial intelligence techniques for photovoltaic systems and its implementation into field programmable gate array chips: Review of current status and future perspectives," Energy, Elsevier, vol. 70(C), pages 1-21.
    4. Kakosimos, Panagiotis E. & Kladas, Antonios G., 2011. "Implementation of photovoltaic array MPPT through fixed step predictive control technique," Renewable Energy, Elsevier, vol. 36(9), pages 2508-2514.
    5. Datta, Manoj & Senjyu, Tomonobu & Yona, Atsushi & Funabashi, Toshihisa, 2011. "A fuzzy based method for leveling output power fluctuations of photovoltaic-diesel hybrid power system," Renewable Energy, Elsevier, vol. 36(6), pages 1693-1703.
    6. Chun-Liang Liu & Jing-Hsiao Chen & Yi-Hua Liu & Zong-Zhen Yang, 2014. "An Asymmetrical Fuzzy-Logic-Control-Based MPPT Algorithm for Photovoltaic Systems," Energies, MDPI, vol. 7(4), pages 1-17, April.
    7. Ramli, Makbul A.M. & Twaha, Ssennoga & Ishaque, Kashif & Al-Turki, Yusuf A., 2017. "A review on maximum power point tracking for photovoltaic systems with and without shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 144-159.
    8. Po-Chen Cheng & Bo-Rei Peng & Yi-Hua Liu & Yu-Shan Cheng & Jia-Wei Huang, 2015. "Optimization of a Fuzzy-Logic-Control-Based MPPT Algorithm Using the Particle Swarm Optimization Technique," Energies, MDPI, vol. 8(6), pages 1-23, June.
    9. Ishaque, Kashif & Salam, Zainal, 2013. "A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 475-488.
    10. Qi, Jun & Zhang, Youbing & Chen, Yi, 2014. "Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions," Renewable Energy, Elsevier, vol. 66(C), pages 337-345.
    11. Bizon, Nicu, 2016. "Global Maximum Power Point Tracking (GMPPT) of Photovoltaic array using the Extremum Seeking Control (ESC): A review and a new GMPPT ESC scheme," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 524-539.
    12. Lalili, D. & Mellit, A. & Lourci, N. & Medjahed, B. & Berkouk, E.M., 2011. "Input output feedback linearization control and variable step size MPPT algorithm of a grid-connected photovoltaic inverter," Renewable Energy, Elsevier, vol. 36(12), pages 3282-3291.
    13. Suganthi, L. & Iniyan, S. & Samuel, Anand A., 2015. "Applications of fuzzy logic in renewable energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 585-607.
    14. Rajesh, R. & Carolin Mabel, M., 2015. "A comprehensive review of photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 231-248.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rajesh, R. & Mabel, M. Carolin, 2016. "Design and real time implementation of a novel rule compressed fuzzy logic method for the determination operating point in a photo voltaic system," Energy, Elsevier, vol. 116(P1), pages 140-153.
    2. Abu Eldahab, Yasser E. & Saad, Naggar H. & Zekry, Abdalhalim, 2014. "Enhancing the maximum power point tracking techniques for photovoltaic systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 505-514.
    3. Cheick Tidjane Kone & Jean-Denis Mathias & Gil De Sousa, 2017. "Adaptive management of energy consumption, reliability and delay of wireless sensor node: Application to IEEE 802.15.4 wireless sensor node," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-28, February.
    4. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    5. Celik, Ali Naci & Muneer, Tariq & Clarke, Peter, 2009. "A review of installed solar photovoltaic and thermal collector capacities in relation to solar potential for the EU-15," Renewable Energy, Elsevier, vol. 34(3), pages 849-856.
    6. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "Appropriate storage for high-penetration grid-connected photovoltaic plants," Energy Policy, Elsevier, vol. 40(C), pages 335-344.
    7. Mirlatifi, A.M. & Egelioglu, F. & Atikol, U., 2015. "An econometric model for annual peak demand for small utilities," Energy, Elsevier, vol. 89(C), pages 35-44.
    8. Don Fullerton & Chi L. Ta, 2022. "What Determines Effectiveness of Renewable Energy Standards? General Equilibrium Analytical Model and Empirical Analysis," CESifo Working Paper Series 9565, CESifo.
    9. Tafarte, Philip & Das, Subhashree & Eichhorn, Marcus & Thrän, Daniela, 2014. "Small adaptations, big impacts: Options for an optimized mix of variable renewable energy sources," Energy, Elsevier, vol. 72(C), pages 80-92.
    10. Byuk-Keun Jo & Gilsoo Jang, 2019. "An Evaluation of the Effect on the Expansion of Photovoltaic Power Generation According to Renewable Energy Certificates on Energy Storage Systems: A Case Study of the Korean Renewable Energy Market," Sustainability, MDPI, vol. 11(16), pages 1-17, August.
    11. Solomon, A.A. & Faiman, D. & Meron, G., 2012. "The role of conventional power plants in a grid fed mainly by PV and storage, and the largest shadow capacity requirement," Energy Policy, Elsevier, vol. 48(C), pages 479-486.
    12. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    13. Kendel, Adnane & Lazaric, Nathalie & Maréchal, Kevin, 2017. "What do people ‘learn by looking’ at direct feedback on their energy consumption? Results of a field study in Southern France," Energy Policy, Elsevier, vol. 108(C), pages 593-605.
    14. Breyer, Christian & Birkner, Christian & Meiss, Jan & Goldschmidt, Jan Christoph & Riede, Moritz, 2013. "A top-down analysis: Determining photovoltaics R&D investments from patent analysis and R&D headcount," Energy Policy, Elsevier, vol. 62(C), pages 1570-1580.
    15. Zhang, Qi & Mclellan, Benjamin C. & Tezuka, Tetsuo & Ishihara, Keiichi N., 2013. "An integrated model for long-term power generation planning toward future smart electricity systems," Applied Energy, Elsevier, vol. 112(C), pages 1424-1437.
    16. García-Gracia, M. & El Halabi, N. & Khodr, H.M. & Sanz, Jose Fco, 2010. "Improvement of large scale solar installation model for ground current analysis," Applied Energy, Elsevier, vol. 87(11), pages 3467-3474, November.
    17. Trainer, Ted, 2013. "Can Europe run on renewable energy? A negative case," Energy Policy, Elsevier, vol. 63(C), pages 845-850.
    18. Kawajiri, Kotaro & Kondo, Yasuhiko & Aki, Hirohisa & Murata, Akinobu, 2019. "Simplified method to estimate grid flexibility: Application to Japanese electrical grids," Energy, Elsevier, vol. 167(C), pages 26-34.
    19. Paschmann, Martin, 2017. "Leveraging the Benefits of Integrating and Interacting Electric Vehicles and Distributed Energy Resources," EWI Working Papers 2017-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    20. DeBenedictis, A. & Hoff, T.E. & Price, S. & Woo, C.K., 2010. "Statistically adjusted engineering (SAE) modeling of metered roof-top photovoltaic (PV) output: California evidence," Energy, Elsevier, vol. 35(10), pages 4178-4183.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:34:y:2009:i:12:p:2597-2606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.