IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v27y2002i2p237-258.html
   My bibliography  Save this article

A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads

Author

Listed:
  • Sukamongkol, Y.
  • Chungpaibulpatana, S.
  • Ongsakul, W.

Abstract

This paper describes the development of a simulation model for predicting the performance of a solar photovoltaic (PV) system under specified load requirements and prevailing meteorological conditions at the site location. This study is aimed at situations where the loads are provided by alternating current (AC) electrical devices. The model consists of several submodels for each of the main components of the PV system; namely, PV array, battery, controller, inverter and various loads. Mathematical equations developed for modeling the performance of each component are explained along with the methodology to determine the performance coefficients. In order to validate the developed simulation model, an experimental system has been set up and tested under a variety of climatic conditions. Simulated results from the model under the same operating and environmental conditions are compared with those observed from the experimental tests. Good agreement is found in the comparison. Slight discrepancies appearing in the results are described and recommendations are given for further improvement. The simulation model developed can be used not only for analyzing the PV system performance, but also for sizing the PV system which is most suitable to the load requirements at any specified location provided that the local meteorological data is available.

Suggested Citation

  • Sukamongkol, Y. & Chungpaibulpatana, S. & Ongsakul, W., 2002. "A simulation model for predicting the performance of a solar photovoltaic system with alternating current loads," Renewable Energy, Elsevier, vol. 27(2), pages 237-258.
  • Handle: RePEc:eee:renene:v:27:y:2002:i:2:p:237-258
    DOI: 10.1016/S0960-1481(02)00002-2
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102000022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00002-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chaurey, A. & Deambi, S., 1992. "Battery storage for PV power systems: An overview," Renewable Energy, Elsevier, vol. 2(3), pages 227-235.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mellit, A. & Kalogirou, S.A. & Hontoria, L. & Shaari, S., 2009. "Artificial intelligence techniques for sizing photovoltaic systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 406-419, February.
    2. Eltawil, Mohamed A. & Zhao, Zhengming, 2010. "Grid-connected photovoltaic power systems: Technical and potential problems--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 112-129, January.
    3. Cheick Tidjane Kone & Jean-Denis Mathias & Gil De Sousa, 2017. "Adaptive management of energy consumption, reliability and delay of wireless sensor node: Application to IEEE 802.15.4 wireless sensor node," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-28, February.
    4. Daud, Abdel-Karim & Ismail, Mahmoud S., 2012. "Design of isolated hybrid systems minimizing costs and pollutant emissions," Renewable Energy, Elsevier, vol. 44(C), pages 215-224.
    5. Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2007. "Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure," Renewable Energy, Elsevier, vol. 32(2), pages 285-313.
    6. Syafaruddin, & Karatepe, Engin & Hiyama, Takashi, 2009. "Polar coordinated fuzzy controller based real-time maximum-power point control of photovoltaic system," Renewable Energy, Elsevier, vol. 34(12), pages 2597-2606.
    7. Uzunoglu, M. & Onar, O.C. & Alam, M.S., 2009. "Modeling, control and simulation of a PV/FC/UC based hybrid power generation system for stand-alone applications," Renewable Energy, Elsevier, vol. 34(3), pages 509-520.
    8. El Halabi, N. & García-Gracia, M. & Comech, M.P. & Oyarbide, E., 2012. "Distributed generation network design considering ground capacitive couplings," Renewable Energy, Elsevier, vol. 45(C), pages 119-127.
    9. Zakaria Belboul & Belgacem Toual & Abdellah Kouzou & Lakhdar Mokrani & Abderrahman Bensalem & Ralph Kennel & Mohamed Abdelrahem, 2022. "Multiobjective Optimization of a Hybrid PV/Wind/Battery/Diesel Generator System Integrated in Microgrid: A Case Study in Djelfa, Algeria," Energies, MDPI, vol. 15(10), pages 1-30, May.
    10. Ma, Tao & Yang, Hongxing & Lu, Lin, 2014. "Solar photovoltaic system modeling and performance prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 304-315.
    11. García-Gracia, M. & El Halabi, N. & Khodr, H.M. & Sanz, Jose Fco, 2010. "Improvement of large scale solar installation model for ground current analysis," Applied Energy, Elsevier, vol. 87(11), pages 3467-3474, November.
    12. Zhang, Xiaoling & Shen, Liyin & Chan, Sum Yee, 2012. "The diffusion of solar energy use in HK: What are the barriers?," Energy Policy, Elsevier, vol. 41(C), pages 241-249.
    13. Kaplani, E. & Kaplanis, S., 2012. "A stochastic simulation model for reliable PV system sizing providing for solar radiation fluctuations," Applied Energy, Elsevier, vol. 97(C), pages 970-981.
    14. Ali M. Jasim & Basil H. Jasim & Florin-Constantin Baiceanu & Bogdan-Constantin Neagu, 2023. "Optimized Sizing of Energy Management System for Off-Grid Hybrid Solar/Wind/Battery/Biogasifier/Diesel Microgrid System," Mathematics, MDPI, vol. 11(5), pages 1-34, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaldellis, J.K. & Zafirakis, D. & Kondili, E., 2009. "Optimum autonomous stand-alone photovoltaic system design on the basis of energy pay-back analysis," Energy, Elsevier, vol. 34(9), pages 1187-1198.
    2. Aotian Song & Lin Lu & Zhizhao Liu & Man Sing Wong, 2016. "A Study of Incentive Policies for Building-Integrated Photovoltaic Technology in Hong Kong," Sustainability, MDPI, vol. 8(8), pages 1-21, August.
    3. Khalilpour, Rajab & Vassallo, Anthony, 2016. "Planning and operation scheduling of PV-battery systems: A novel methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 194-208.
    4. Zhou, Wei & Yang, Hongxing & Fang, Zhaohong, 2008. "Battery behavior prediction and battery working states analysis of a hybrid solar–wind power generation system," Renewable Energy, Elsevier, vol. 33(6), pages 1413-1423.
    5. Khalilpour, Rajab & Vassallo, Anthony, 2015. "Leaving the grid: An ambition or a real choice?," Energy Policy, Elsevier, vol. 82(C), pages 207-221.
    6. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    7. Taha, Azmi Z., 1995. "The oversizing method of estimation in PV systems," Renewable Energy, Elsevier, vol. 6(5), pages 487-490.
    8. Ro, Kyoungsoo & Rahman, Saifur, 1998. "Battery or fuel cell support for an autonomous photovoltaic power system," Renewable Energy, Elsevier, vol. 13(2), pages 203-213.
    9. Zhou, Wei & Lou, Chengzhi & Li, Zhongshi & Lu, Lin & Yang, Hongxing, 2010. "Current status of research on optimum sizing of stand-alone hybrid solar-wind power generation systems," Applied Energy, Elsevier, vol. 87(2), pages 380-389, February.
    10. Avril, S. & Arnaud, G. & Florentin, A. & Vinard, M., 2010. "Multi-objective optimization of batteries and hydrogen storage technologies for remote photovoltaic systems," Energy, Elsevier, vol. 35(12), pages 5300-5308.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:27:y:2002:i:2:p:237-258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.