IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v33y2008i3p454-466.html
   My bibliography  Save this article

Smooth transition from wind only to wind diesel mode in an autonomous wind diesel system with a battery-based energy storage system

Author

Listed:
  • Sebastián, R.

Abstract

High wind penetration wind diesel hybrid systems (WDHS) have three modes of operation: Diesel Only (DO), Wind Diesel (WD) and Wind Only (WO). The WDHS presented in this article consists of a wind turbine generator (WTG), a diesel engine (DE), a synchronous machine (SM), the consumer load, a battery-based energy storage system (BESS), a discrete dump load (DL) and a distributed control system (DCS). The DE can be engaged (DO and WD modes)/disengaged (WO mode) from the SM by means of a clutch. The DCS consists of a sensor node, which measures the SM and DE speeds, calculates the reference active power PREF necessary to balance the active power in the WDHS and communicates this PREF value with a message to the BESS and DL actuator nodes. In the WO mode, the power sources are the WTG and the BESS (temporary) and if there is an active power shortfall, the DCS, to prevent a frequency collapse, must order to start the DE, wait until the DE reaches the SM speed and lock the clutch, changing to the WD mode. With the clutch locked, the combined actuation of the DE+BESS will raise the system frequency to the rated value. This WO to WD transition is simulated in this article showing graphs for frequency, voltage and active powers for the elements of the system. These graphs are compared with the ones obtained if the BESS does not actuate in WD mode. The comparison results show that with the BESS actuation in WD mode the settling time is reduced a 50%, the over and under shooting in the system frequency are eliminated and the system voltage variations are reduced a 40%.

Suggested Citation

  • Sebastián, R., 2008. "Smooth transition from wind only to wind diesel mode in an autonomous wind diesel system with a battery-based energy storage system," Renewable Energy, Elsevier, vol. 33(3), pages 454-466.
  • Handle: RePEc:eee:renene:v:33:y:2008:i:3:p:454-466
    DOI: 10.1016/j.renene.2007.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148107000778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2007.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sebastián, R. & Quesada, J., 2006. "Distributed control system for frequency control in a isolated wind system," Renewable Energy, Elsevier, vol. 31(3), pages 285-305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krumdieck, Susan & Hamm, Andreas, 2009. "Strategic analysis methodology for energy systems with remote island case study," Energy Policy, Elsevier, vol. 37(9), pages 3301-3313, September.
    2. Rahimi, Ehsan & Rabiee, Abdorreza & Aghaei, Jamshid & Muttaqi, Kashem M. & Esmaeel Nezhad, Ali, 2013. "On the management of wind power intermittency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 643-653.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Şerban, I. & Marinescu, C., 2011. "Aggregate load-frequency control of a wind-hydro autonomous microgrid," Renewable Energy, Elsevier, vol. 36(12), pages 3345-3354.
    2. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I. & Muttaqi, K.M. & Moghavvemi, S., 2015. "Effective utilization of excess energy in standalone hybrid renewable energy systems for improving comfort ability and reducing cost of energy: A review and analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 726-734.
    3. Md Jahidur Rahman & Tahar Tafticht & Mamadou Lamine Doumbia & Ntumba Marc-Alain Mutombo, 2021. "Dynamic Stability of Wind Power Flow and Network Frequency for a High Penetration Wind-Based Energy Storage System Using Fuzzy Logic Controller," Energies, MDPI, vol. 14(14), pages 1-18, July.
    4. Rafael Sebastián, 2021. "Review on Dynamic Simulation of Wind Diesel Isolated Microgrids," Energies, MDPI, vol. 14(7), pages 1-17, March.
    5. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    6. Rafael Sebastián, 2022. "Modeling, Simulation and Control of Wind Diesel Power Systems," Energies, MDPI, vol. 15(5), pages 1-2, February.
    7. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    8. Khalid, M. & Savkin, A.V., 2012. "An optimal operation of wind energy storage system for frequency control based on model predictive control," Renewable Energy, Elsevier, vol. 48(C), pages 127-132.
    9. Kalantar, M. & Mousavi G., S.M., 2010. "Dynamic behavior of a stand-alone hybrid power generation system of wind turbine, microturbine, solar array and battery storage," Applied Energy, Elsevier, vol. 87(10), pages 3051-3064, October.
    10. Tofighi, A. & Kalantar, M., 2011. "Power management of PV/battery hybrid power source via passivity-based control," Renewable Energy, Elsevier, vol. 36(9), pages 2440-2450.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:33:y:2008:i:3:p:454-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.