IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i5p683-697.html
   My bibliography  Save this article

A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse

Author

Listed:
  • Kürklü, Ahmet
  • Bilgin, Sefai
  • Özkan, Burhan

Abstract

A study was conducted to store solar energy in an underground rock-bed for greenhouse heating. Experiments were carried out in two identical polyethylene tunnel type greenhouses, each with 15 m2 ground area. Rocks were filled in two canals excavated and insulated in the soil of one of the greenhouses. Greenhouse air was pushed through the rock-bed by a centrifugal fan with 1100 m3/h air flow rate and controlled by two thermostats when the energy storage or release was required. No crops were grown in the greenhouses and the vents were kept closed unless excessive condensation occurrence inside the greenhouses. The results of this study showed that the rock-bed system created an air temperature difference of about 10 °C at night, between the two greenhouses, the control one having the lower temperature. Furthermore, the rock-bed system kept the inside air temperature higher than that of outside air at night, even in an overcast day following a clear day. Whilst solar energy collection efficiency of the system was 34%, its energy recovery or release efficiency was higher than 80%. A numerical mathematical model considered here represented actual data well. An economic analysis indicated that the rock-bed system is more economical than the LPG or petroleum-based fuel burning heating systems widely used in Turkish greenhouses.

Suggested Citation

  • Kürklü, Ahmet & Bilgin, Sefai & Özkan, Burhan, 2003. "A study on the solar energy storing rock-bed to heat a polyethylene tunnel type greenhouse," Renewable Energy, Elsevier, vol. 28(5), pages 683-697.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:5:p:683-697
    DOI: 10.1016/S0960-1481(02)00109-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014810200109X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00109-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bouhdjar, A. & Belhamel, M. & Belkhiri, F.E. & Boulbina, A., 1996. "Performance of sensible heat storage in a rockbed used in a tunnel greenhouse," Renewable Energy, Elsevier, vol. 9(1), pages 724-728.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Canakci, Murad & Yasemin Emekli, N. & Bilgin, Sefai & Caglayan, Nuri, 2013. "Heating requirement and its costs in greenhouse structures: A case study for Mediterranean region of Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 483-490.
    2. Kurpaska, S. & Latala, H., 2010. "Energy analysis of heat surplus storage systems in plastic tunnels," Renewable Energy, Elsevier, vol. 35(12), pages 2656-2665.
    3. Zhang, Donghai & Gao, Penghui & Zhou, Yang & Wang, Yijiang & Zhou, Guoqing, 2020. "An experimental and numerical investigation on temperature profile of underground soil in the process of heat storage," Renewable Energy, Elsevier, vol. 148(C), pages 1-21.
    4. Chrysanthos Maraveas & Christos-Spyridon Karavas & Dimitrios Loukatos & Thomas Bartzanas & Konstantinos G. Arvanitis & Eleni Symeonaki, 2023. "Agricultural Greenhouses: Resource Management Technologies and Perspectives for Zero Greenhouse Gas Emissions," Agriculture, MDPI, vol. 13(7), pages 1-46, July.
    5. Kamil Salihoglu, Nezih & Pinarli, Vedat & Salihoglu, Guray, 2007. "Solar drying in sludge management in Turkey," Renewable Energy, Elsevier, vol. 32(10), pages 1661-1675.
    6. Joudi, Khalid A. & Farhan, Ammar A., 2014. "Greenhouse heating by solar air heaters on the roof," Renewable Energy, Elsevier, vol. 72(C), pages 406-414.
    7. Chen, Wei & Liu, Wei, 2006. "Numerical simulation of the airflow and temperature distribution in a lean-to greenhouse," Renewable Energy, Elsevier, vol. 31(4), pages 517-535.
    8. Gourdo, L. & Fatnassi, H. & Tiskatine, R. & Wifaya, A. & Demrati, H. & Aharoune, A. & Bouirden, L., 2019. "Solar energy storing rock-bed to heat an agricultural greenhouse," Energy, Elsevier, vol. 169(C), pages 206-212.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bouadila, Salwa & Kooli, Sami & Skouri, Safa & Lazaar, Mariem & Farhat, Abdelhamid, 2014. "Improvement of the greenhouse climate using a solar air heater with latent storage energy," Energy, Elsevier, vol. 64(C), pages 663-672.
    2. Parajuli, Samvid & Narayan Bhattarai, Tek & Gorjian, Shiva & Vithanage, Meththika & Raj Paudel, Shukra, 2023. "Assessment of potential renewable energy alternatives for a typical greenhouse aquaponics in Himalayan Region of Nepal," Applied Energy, Elsevier, vol. 344(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:5:p:683-697. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.