IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipds0960148124019530.html
   My bibliography  Save this article

Bioenergy and bioexergy analyses with artificial intelligence application on combustion of recycled hardwood and softwood wastes

Author

Listed:
  • Aniza, Ria
  • Chen, Wei-Hsin
  • Herrera, Christian J.A.
  • Quirino, Rafael
  • Petrissans, Mathieu
  • Petrissans, Anelie

Abstract

Novel biomass bioenergy-bioexergy analyses via thermogravimetry analysis and artificial intelligence are employed to evaluate the three biofuels from wood wastes (softwood-SW, hardwood-HW, and woods blend-WB). The chemical characterization of SW has the highest bioenergy (higher heating value – HHV: 18.84 MJ kg−1) and bioexergy (specific chemical bioexergy – SCB: 19.65 MJ kg−1) with the SCB/HHV ratio of wood waste as about 1.043–1.046. The high C-element has a significant influence on the HHV-SCB. The three distinct zones of wood waste combustion are identified: moisture evaporation (Zone I, up to 110 °C), combustion reaction – degradation of three major lignocellulosic components (hemicelluloses, cellulose, and lignin) at Zone II, 110–600 °C, and ash remains (Zone III, 600–800 °C). The ignition (Dig = 0.01–0.04) and fuel reactivity (Rfuel = 3.82–6.97 %·min−1·°C−1) indexes are evaluated. The comprehensive combustion index (Sn:>5 × 10−7%2 min−2 °C−3) suggests that wood waste has a better combustion performance than bituminous coal. The statistical evaluation presents that the highest HHV-SCB values are obtained by performing combustion for SW-250 μm at 15 °C·min−1. The S/N ratio and ANOVA results agree that the wood waste type and particle size denote the most influential parameters. The artificial neural network prediction shows an excellent result (R2 = 1) with 1 hidden layer and 5 neuron configurations.

Suggested Citation

  • Aniza, Ria & Chen, Wei-Hsin & Herrera, Christian J.A. & Quirino, Rafael & Petrissans, Mathieu & Petrissans, Anelie, 2024. "Bioenergy and bioexergy analyses with artificial intelligence application on combustion of recycled hardwood and softwood wastes," Renewable Energy, Elsevier, vol. 237(PD).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019530
    DOI: 10.1016/j.renene.2024.121885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124019530
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pd:s0960148124019530. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.