IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipcs0960148124017658.html
   My bibliography  Save this article

Environmental impact assessment of a direct methanol fuel cell and strategic mitigation guidelines

Author

Listed:
  • Santiago, Óscar
  • González-Domínguez, Jaime
  • Botejara-Antúnez, Manuel
  • Navarro, Emilio
  • García-Sanz-Calcedo, Justo
  • Leo, Teresa J.

Abstract

Direct methanol fuel cells (DMFCs) are gaining attention as a viable technology for portable and remote applications due to the benefits of methanol as fuel. However, the environmental implications of this technology have not been thoroughly evaluated. This study aims to conduct a comprehensive assessment of the environmental impact of a DMFC throughout its entire life cycle, and based on the findings, propose guidelines for minimizing the impact. To eliminate any potential biases, a two-step design methodology is applied. The first step involves obtaining the optimal preliminary design, for which a genetic algorithm is implemented. The second step is to conduct the environmental impact study on that optimal configuration. As a study case, a DMFC for a highly demanding application, such as an unmanned aerial vehicle, is selected, using green methanol as fuel. The results reveal that extraction and production stage has the greatest effect on the environment (74.1 %), compared to use (25.8 %) and transport stages (0.1 %). Among the components of the stack, the catalysts have the most significant environmental footprint, 93.3 % of the total impact of the stack during the extraction and production stage, while bipolar plates represent only 5.9 %, despite comprising 86 % of the stack's mass.

Suggested Citation

  • Santiago, Óscar & González-Domínguez, Jaime & Botejara-Antúnez, Manuel & Navarro, Emilio & García-Sanz-Calcedo, Justo & Leo, Teresa J., 2024. "Environmental impact assessment of a direct methanol fuel cell and strategic mitigation guidelines," Renewable Energy, Elsevier, vol. 237(PC).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017658
    DOI: 10.1016/j.renene.2024.121697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017658
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Santiago, Óscar & Navarro, Emilio & Raso, Miguel A. & Leo, Teresa J., 2016. "Review of implantable and external abiotically catalysed glucose fuel cells and the differences between their membranes and catalysts," Applied Energy, Elsevier, vol. 179(C), pages 497-522.
    2. Yeh, Pulin & Chang, Chu Hsiang & Shih, Naichien & Yeh, Naichia, 2016. "Durability and efficiency tests for direct methanol fuel cell's long-term performance assessment," Energy, Elsevier, vol. 107(C), pages 716-724.
    3. Tereza Assis Bicalho Bicalho & Ildo Sauer & Alexandre Rambaud & Yulia Altukhova-Nys, 2017. "LCA data quality: A management science perspective," Post-Print hal-02958533, HAL.
    4. Mitja Mori & Rok Stropnik & Mihael Sekavčnik & Andrej Lotrič, 2021. "Criticality and Life-Cycle Assessment of Materials Used in Fuel-Cell and Hydrogen Technologies," Sustainability, MDPI, vol. 13(6), pages 1-29, March.
    5. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    6. Badwal, S.P.S. & Giddey, S. & Kulkarni, A. & Goel, J. & Basu, S., 2015. "Direct ethanol fuel cells for transport and stationary applications – A comprehensive review," Applied Energy, Elsevier, vol. 145(C), pages 80-103.
    7. Ángela Triguero & Lourdes Moreno‐Mondéjar & Francisco J. Sáez‐Martínez, 2023. "Circular economy and firm performance: The influence of product life cycle analysis, upcycling, and redesign," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(4), pages 2318-2331, August.
    8. Lee, Boreum & Lee, Hyunjun & Lim, Dongjun & Brigljević, Boris & Cho, Wonchul & Cho, Hyun-Seok & Kim, Chang-Hee & Lim, Hankwon, 2020. "Renewable methanol synthesis from renewable H2 and captured CO2: How can power-to-liquid technology be economically feasible?," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Junye, 2017. "System integration, durability and reliability of fuel cells: Challenges and solutions," Applied Energy, Elsevier, vol. 189(C), pages 460-479.
    2. Najmi, Aezid-Ul-Hassan & Anyanwu, Ikechukwu S. & Xie, Xu & Liu, Zhi & Jiao, Kui, 2021. "Experimental investigation and optimization of proton exchange membrane fuel cell using different flow fields," Energy, Elsevier, vol. 217(C).
    3. Hosseini, Mir Ghasem & Mahmoodi, Raana & Daneshvari-Esfahlan, Vahid, 2018. "Ni@Pd core-shell nanostructure supported on multi-walled carbon nanotubes as efficient anode nanocatalysts for direct methanol fuel cells with membrane electrode assembly prepared by catalyst coated m," Energy, Elsevier, vol. 161(C), pages 1074-1084.
    4. Fang, Shuo & Song, Nan & Liu, Yuntao & Zhao, Chunhui & Wang, Ying, 2024. "Comprehensive energy conversion efficiency analysis of micro direct methanol fuel cell stack based on polarization theory," Energy, Elsevier, vol. 287(C).
    5. Yang, Qinwen & Gao, Bin & Cheng, Qiang & Xiao, Gang & Meng, Min, 2022. "Adaptive control strategy for power output stability in long-time operation of fuel cells," Energy, Elsevier, vol. 238(PA).
    6. Yu, Bor-Chern & Wang, Yi-Chun & Lu, Hsin-Chun & Lin, Hsiu-Li & Shih, Chao-Ming & Kumar, S. Rajesh & Lue, Shingjiang Jessie, 2017. "Hydroxide-ion selective electrolytes based on a polybenzimidazole/graphene oxide composite membrane," Energy, Elsevier, vol. 134(C), pages 802-812.
    7. Ermete Antolini, 2017. "Pt-Ni and Pt-M-Ni (M = Ru, Sn) Anode Catalysts for Low-Temperature Acidic Direct Alcohol Fuel Cells: A Review," Energies, MDPI, vol. 10(1), pages 1-20, January.
    8. Zhen Zhang & Chengzhi Guan & Leidong Xie & Jian-Qiang Wang, 2022. "Design and Analysis of a Novel Opposite Trapezoidal Flow Channel for Solid Oxide Electrolysis Cell Stack," Energies, MDPI, vol. 16(1), pages 1-11, December.
    9. Rahmani, Ebrahim & Moradi, Tofigh & Ghandehariun, Samane & Naterer, Greg F. & Ranjbar, Amirhossein, 2023. "Enhanced mass transfer and water discharge in a proton exchange membrane fuel cell with a raccoon channel flow field," Energy, Elsevier, vol. 264(C).
    10. Zhou, Lean & Liao, Chengmei & Li, Tian & An, Jingkun & Du, Qing & Wan, Lili & Li, Nan & Pan, Xiaoqiang & Wang, Xin, 2018. "Regeneration of activated carbon air-cathodes by half-wave rectified alternating fields in microbial fuel cells," Applied Energy, Elsevier, vol. 219(C), pages 199-206.
    11. Siddiqui, Osman K. & Zubair, Syed M., 2017. "Efficient energy utilization through proper design of microchannel heat exchanger manifolds: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 969-1002.
    12. Deborah S. B. L. de Oliveira & Flavio Colmati & Ruy de Sousa, 2022. "Reaction Kinetics-Based Modeling and Parameter Sensitivity Analysis of Direct Ethanol Fuel Cells," Energies, MDPI, vol. 15(23), pages 1-12, December.
    13. Wu, Zhicong & Zhang, Ziyue & Xu, Gang & Ge, Shiyu & Xue, Xiaojun & Chen, Heng, 2024. "Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 300(C).
    14. Ankang Miao & Yue Yuan & Yi Huang & Han Wu & Chao Feng, 2023. "Stochastic Optimization Model of Capacity Configuration for Integrated Energy Production System Considering Source-Load Uncertainty," Sustainability, MDPI, vol. 15(19), pages 1-22, September.
    15. Ismail N.B. & Sébastien Alcouffe & Galy N & Ceulemans K, 2020. "The impact of international sustainability initiatives on Life Cycle Assessment voluntary disclosures: The case of France’s CAC40 listed companies," Post-Print hal-03082800, HAL.
    16. Cao, Qiming & Min, Haitao & Sun, Weiyi & Zhao, Honghui & Yu, Yuanbin & Zhang, Zhaopu & Jiang, Junyu, 2024. "A method of combining active and passive strategies by genetic algorithm in multi-stage cold start of proton exchange membrane fuel cell," Energy, Elsevier, vol. 288(C).
    17. Ruggero Angelico & Ferruccio Giametta & Biagio Bianchi & Pasquale Catalano, 2025. "Green Hydrogen for Energy Transition: A Critical Perspective," Energies, MDPI, vol. 18(2), pages 1-47, January.
    18. Yuan, Wei & Wang, Aoyu & Ye, Guangzhao & Pan, Baoyou & Tang, Kairui & Chen, Haimu, 2017. "Dynamic relationship between the CO2 gas bubble behavior and the pressure drop characteristics in the anode flow field of an active liquid-feed direct methanol fuel cell," Applied Energy, Elsevier, vol. 188(C), pages 431-443.
    19. Huo, Sen & Cooper, Nathanial James & Smith, Travis Lee & Park, Jae Wan & Jiao, Kui, 2017. "Experimental investigation on PEM fuel cell cold start behavior containing porous metal foam as cathode flow distributor," Applied Energy, Elsevier, vol. 203(C), pages 101-114.
    20. Byunghui Kim & Kuisoon Kim & Seokho Kim, 2020. "Numerical Study on Novel Design for Compact Parallel-Flow Heat Exchanger with Manifolds to Improve Flow Characteristics," Energies, MDPI, vol. 13(23), pages 1-13, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pc:s0960148124017658. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.