IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v615y2023i7953d10.1038_s41586-023-05732-2.html
   My bibliography  Save this article

Dense reinforcement learning for safety validation of autonomous vehicles

Author

Listed:
  • Shuo Feng

    (University of Michigan
    University of Michigan Transportation Research Institute
    Tsinghua University)

  • Haowei Sun

    (University of Michigan)

  • Xintao Yan

    (University of Michigan)

  • Haojie Zhu

    (University of Michigan)

  • Zhengxia Zou

    (University of Michigan
    Beihang University)

  • Shengyin Shen

    (University of Michigan Transportation Research Institute)

  • Henry X. Liu

    (University of Michigan
    University of Michigan Transportation Research Institute
    University of Michigan)

Abstract

One critical bottleneck that impedes the development and deployment of autonomous vehicles is the prohibitively high economic and time costs required to validate their safety in a naturalistic driving environment, owing to the rarity of safety-critical events1. Here we report the development of an intelligent testing environment, where artificial-intelligence-based background agents are trained to validate the safety performances of autonomous vehicles in an accelerated mode, without loss of unbiasedness. From naturalistic driving data, the background agents learn what adversarial manoeuvre to execute through a dense deep-reinforcement-learning (D2RL) approach, in which Markov decision processes are edited by removing non-safety-critical states and reconnecting critical ones so that the information in the training data is densified. D2RL enables neural networks to learn from densified information with safety-critical events and achieves tasks that are intractable for traditional deep-reinforcement-learning approaches. We demonstrate the effectiveness of our approach by testing a highly automated vehicle in both highway and urban test tracks with an augmented-reality environment, combining simulated background vehicles with physical road infrastructure and a real autonomous test vehicle. Our results show that the D2RL-trained agents can accelerate the evaluation process by multiple orders of magnitude (103 to 105 times faster). In addition, D2RL will enable accelerated testing and training with other safety-critical autonomous systems.

Suggested Citation

  • Shuo Feng & Haowei Sun & Xintao Yan & Haojie Zhu & Zhengxia Zou & Shengyin Shen & Henry X. Liu, 2023. "Dense reinforcement learning for safety validation of autonomous vehicles," Nature, Nature, vol. 615(7953), pages 620-627, March.
  • Handle: RePEc:nat:nature:v:615:y:2023:i:7953:d:10.1038_s41586-023-05732-2
    DOI: 10.1038/s41586-023-05732-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-023-05732-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-023-05732-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xintao Yan & Zhengxia Zou & Shuo Feng & Haojie Zhu & Haowei Sun & Henry X. Liu, 2023. "Learning naturalistic driving environment with statistical realism," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Huang, Ruchen & He, Hongwen & Su, Qicong & Härtl, Martin & Jaensch, Malte, 2024. "Enabling cross-type full-knowledge transferable energy management for hybrid electric vehicles via deep transfer reinforcement learning," Energy, Elsevier, vol. 305(C).
    3. Shi, Yunyang & Liu, Jinghan & Liu, Chengqi & Gu, Ziyuan, 2024. "DeepAD: An integrated decision-making framework for intelligent autonomous driving," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    4. Huang, Ruchen & He, Hongwen & Gao, Miaojue, 2023. "Training-efficient and cost-optimal energy management for fuel cell hybrid electric bus based on a novel distributed deep reinforcement learning framework," Applied Energy, Elsevier, vol. 346(C).
    5. Jinxiao Duan & Guanwen Zeng & Nimrod Serok & Daqing Li & Efrat Blumenfeld Lieberthal & Hai-Jun Huang & Shlomo Havlin, 2023. "Spatiotemporal dynamics of traffic bottlenecks yields an early signal of heavy congestions," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Ali Louati & Hassen Louati & Elham Kariri & Wafa Neifar & Mohamed K. Hassan & Mutaz H. H. Khairi & Mohammed A. Farahat & Heba M. El-Hoseny, 2024. "Sustainable Smart Cities through Multi-Agent Reinforcement Learning-Based Cooperative Autonomous Vehicles," Sustainability, MDPI, vol. 16(5), pages 1-18, February.
    7. Huang, Ruchen & He, Hongwen & Su, Qicong, 2024. "Towards a fossil-free urban transport system: An intelligent cross-type transferable energy management framework based on deep transfer reinforcement learning," Applied Energy, Elsevier, vol. 363(C).
    8. Chen, Jiaxin & Tang, Xiaolin & Yang, Kai, 2024. "A unified benchmark for deep reinforcement learning-based energy management: Novel training ideas with the unweighted reward," Energy, Elsevier, vol. 307(C).
    9. Henry X. Liu & Shuo Feng, 2024. "Curse of rarity for autonomous vehicles," Nature Communications, Nature, vol. 15(1), pages 1-5, December.
    10. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    11. Sikai Chen & Shuya Zong & Tiantian Chen & Zilin Huang & Yanshen Chen & Samuel Labi, 2023. "A Taxonomy for Autonomous Vehicles Considering Ambient Road Infrastructure," Sustainability, MDPI, vol. 15(14), pages 1-27, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:615:y:2023:i:7953:d:10.1038_s41586-023-05732-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.