IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v237y2024ipbs0960148124017737.html
   My bibliography  Save this article

Experiment and dynamic simulation of micro gas turbine combined with concentrated solar power system

Author

Listed:
  • Shuai, Wei
  • Zhang, Tian
  • Lv, Hongkun
  • Ying, Haotian
  • Wang, Keqin
  • Xu, Haoran
  • Chen, Dong
  • Zhu, Peiwang
  • Xiao, Gang

Abstract

The solar micro gas turbine (SMGT) system is a promising solution to address the instability and intermittency of renewable energy sources. Its dynamic characteristics under unstable input conditions and uncertain output load demands are crucial for peak shaving. This paper constructs an SMGT system based on experiments with micro gas turbine (MGT) and concentrated solar power (CSP), analyzing the impact of integrating CSP system on the MGT. Then the performance of the SMGT under varying ambient conditions and load demands is studied. Results show that in grid-connected mode, the turbine speed of MGT and SMGT is determined by ambient temperature and set power, with electrical efficiency decreasing as temperature and DNI increase. The solar receiver in the SMGT should maximize temperature increase while maintaining pressure loss below 55 kPa. Additionally, a higher heat capacity can reduce sensitivity to ambient changes but also extends stabilization time. Under real solar radiation, the SMGT system can keep constant power within 0.6 % fluctuation, with a solar share of 36.5 %. When combined with photovoltaic, the hybrid system's maximum power fluctuation does not exceed 2.6 %, with a solar share of 48.8 %. This study provides guidance for optimizing SMGT systems and their application in peak shaving scenarios.

Suggested Citation

  • Shuai, Wei & Zhang, Tian & Lv, Hongkun & Ying, Haotian & Wang, Keqin & Xu, Haoran & Chen, Dong & Zhu, Peiwang & Xiao, Gang, 2024. "Experiment and dynamic simulation of micro gas turbine combined with concentrated solar power system," Renewable Energy, Elsevier, vol. 237(PB).
  • Handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017737
    DOI: 10.1016/j.renene.2024.121705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124017737
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:237:y:2024:i:pb:s0960148124017737. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.