IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124006542.html
   My bibliography  Save this article

Evaluating renewable energy consumption efficiency and impact factors in Asia-pacific economic cooperation countries: A new approach of DEA with undesirable output model

Author

Listed:
  • Wang, Chia-Nan
  • Nguyen, Thi Thuy-Vy
  • Chiang, Chia-Chin
  • Le, Hoang-Dang

Abstract

Balancing economic growth with environmental protection is a global priority. Both developed and developing nations face the challenge of optimizing renewable energy use to achieve sustainable development while minimizing ecological harm. This study employs the Data Envelopment Analysis (DEA) model, incorporating undesirable output, to assess the efficiency of renewable energy consumption across 21 member countries of the Asia-Pacific Economic Cooperation (APEC) from 2011 to 2020. The main variables include foreign direct investment, total energy consumption, total renewable energy capacity as inputs, and gross domestic product growth and greenhouse gas emissions as desired outputs. Results reveal varying levels of renewable energy consumption efficiency, with Brunei, Japan, South Korea, and Hong Kong exhibiting the highest efficiency, while Russia, China, and Vietnam demonstrate the lowest. Notably, developed nations display greater efficiency in utilizing renewable energy compared to their developing counterparts. Moreover, optimizing foreign direct investment, renewable energy consumption, and total renewable energy capacity can enhance overall energy efficiency. By leveraging empirical evidence and estimation techniques, the study provides actionable recommendations for policymakers, emphasizing the pivotal role of financial development and green finance initiatives in promoting sustainable energy development across APEC member countries.

Suggested Citation

  • Wang, Chia-Nan & Nguyen, Thi Thuy-Vy & Chiang, Chia-Chin & Le, Hoang-Dang, 2024. "Evaluating renewable energy consumption efficiency and impact factors in Asia-pacific economic cooperation countries: A new approach of DEA with undesirable output model," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006542
    DOI: 10.1016/j.renene.2024.120586
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124006542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120586?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xin & Mahendru, Mandeep & Ma, Xiaowei & Rao, Amar & Shang, Yuping, 2022. "Impacts of environmental regulations on green economic growth in China: New guidelines regarding renewable energy and energy efficiency," Renewable Energy, Elsevier, vol. 187(C), pages 728-742.
    2. Mohsin, Muhammad & Hanif, Imran & Taghizadeh-Hesary, Farhad & Abbas, Qaiser & Iqbal, Wasim, 2021. "Nexus between energy efficiency and electricity reforms: A DEA-Based way forward for clean power development," Energy Policy, Elsevier, vol. 149(C).
    3. Wang, Xin & Li, Zhengwei & Meng, Haixing & Wu, Jiang, 2017. "Identification of key energy efficiency drivers through global city benchmarking: A data driven approach," Applied Energy, Elsevier, vol. 190(C), pages 18-28.
    4. Kim, Chul, 2021. "A review of the deployment programs, impact, and barriers of renewable energy policies in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Woo, Chungwon & Chung, Yanghon & Chun, Dongphil & Seo, Hangyeol & Hong, Sungjun, 2015. "The static and dynamic environmental efficiency of renewable energy: A Malmquist index analysis of OECD countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 367-376.
    6. Zhou, Sheng & Xu, Zhiwei, 2022. "Energy efficiency assessment of RCEP member states: A three-stage slack based measurement DEA with undesirable outputs," Energy, Elsevier, vol. 253(C).
    7. Mohd Chachuli, Fairuz Suzana & Mat, Sohif & Ludin, Norasikin Ahmad & Sopian, Kamaruzzaman, 2021. "Performance evaluation of renewable energy R&D activities in Malaysia," Renewable Energy, Elsevier, vol. 163(C), pages 544-560.
    8. Djellouli, Nassima & Abdelli, Latifa & Elheddad, Mohamed & Ahmed, Rizwan & Mahmood, Haider, 2022. "The effects of non-renewable energy, renewable energy, economic growth, and foreign direct investment on the sustainability of African countries," Renewable Energy, Elsevier, vol. 183(C), pages 676-686.
    9. Alizadeh, Reza & Gharizadeh Beiragh, Ramin & Soltanisehat, Leili & Soltanzadeh, Elham & Lund, Peter D., 2020. "Performance evaluation of complex electricity generation systems: A dynamic network-based data envelopment analysis approach," Energy Economics, Elsevier, vol. 91(C).
    10. Chen, Xia & Rahaman, Md Atikur & Murshed, Muntasir & Mahmood, Haider & Hossain, Md Afzal, 2023. "Causality analysis of the impacts of petroleum use, economic growth, and technological innovation on carbon emissions in Bangladesh," Energy, Elsevier, vol. 267(C).
    11. Yu, Ying & Yamaguchi, Kensuke & Thuy, Truong Dang & Kittner, Noah, 2022. "Will the public in emerging economies support renewable energy? Evidence from Ho Chi Minh City, Vietnam," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    12. Tan, Hua & Iqbal, Nadeem & Wu, Zhengzhong, 2022. "Evaluating the impact of stakeholder engagement for renewable energy sources and economic growth for CO2 emission," Renewable Energy, Elsevier, vol. 198(C), pages 999-1007.
    13. Luo, Shunjun & Chishti, Muhammad Zubair & Beata, Szetela & Xie, Peijun, 2024. "Digital sparks for a greener future: Unleashing the potential of information and communication technologies in green energy transition," Renewable Energy, Elsevier, vol. 221(C).
    14. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    15. Pérez, Karen & González-Araya, Marcela C. & Iriarte, Alfredo, 2017. "Energy and GHG emission efficiency in the Chilean manufacturing industry: Sectoral and regional analysis by DEA and Malmquist indexes," Energy Economics, Elsevier, vol. 66(C), pages 290-302.
    16. Zeng, Yuan & Guo, Waiying & Wang, Hongmei & Zhang, Fengbin, 2020. "A two-stage evaluation and optimization method for renewable energy development based on data envelopment analysis," Applied Energy, Elsevier, vol. 262(C).
    17. Estevão, João & Lopes, José Dias, 2024. "SDG7 and renewable energy consumption: The influence of energy sources," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    18. Wang, Qiang & Wang, Lili, 2020. "Renewable energy consumption and economic growth in OECD countries: A nonlinear panel data analysis," Energy, Elsevier, vol. 207(C).
    19. Mohd Chachuli, Fairuz Suzana & Ahmad Ludin, Norasikin & Md Jedi, Muhamad Alias & Hamid, Norul Hisham, 2021. "Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    20. Chien, Taichen & Hu, Jin-Li, 2007. "Renewable energy and macroeconomic efficiency of OECD and non-OECD economies," Energy Policy, Elsevier, vol. 35(7), pages 3606-3615, July.
    21. Cicea, Claudiu & Marinescu, Corina & Popa, Ion & Dobrin, Cosmin, 2014. "Environmental efficiency of investments in renewable energy: Comparative analysis at macroeconomic level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 555-564.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Haiyue & Zhang, Ruchuan & Zhou, Li & Li, Aijun, 2023. "Evaluating the financial performance of companies from the perspective of fund procurement and application: New strategy cross efficiency network data envelopment analysis models," Energy, Elsevier, vol. 269(C).
    2. Mohd Chachuli, Fairuz Suzana & Ahmad Ludin, Norasikin & Md Jedi, Muhamad Alias & Hamid, Norul Hisham, 2021. "Transition of renewable energy policies in Malaysia: Benchmarking with data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Chia-Nan Wang & Hector Tibo & Duy Hung Duong, 2020. "Renewable Energy Utilization Analysis of Highly and Newly Industrialized Countries Using an Undesirable Output Model," Energies, MDPI, vol. 13(10), pages 1-21, May.
    4. Sedef E. Kara & Mustapha D. Ibrahim & Sahand Daneshvar, 2021. "Dual Efficiency and Productivity Analysis of Renewable Energy Alternatives of OECD Countries," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    5. Iftikhar, Yaser & Wang, Zhaohua & Zhang, Bin & Wang, Bo, 2018. "Energy and CO2 emissions efficiency of major economies: A network DEA approach," Energy, Elsevier, vol. 147(C), pages 197-207.
    6. Mohd Chachuli, Fairuz Suzana & Mat, Sohif & Ludin, Norasikin Ahmad & Sopian, Kamaruzzaman, 2021. "Performance evaluation of renewable energy R&D activities in Malaysia," Renewable Energy, Elsevier, vol. 163(C), pages 544-560.
    7. Li, Wanying & Ji, Zhengsen & Dong, Fugui & Yang, Yugui, 2024. "Evaluation of provincial renewable energy generation efficiency and spatio-temporal heterogeneity of influencing factors in China," Renewable Energy, Elsevier, vol. 226(C).
    8. Mardani, Abbas & Zavadskas, Edmundas Kazimieras & Streimikiene, Dalia & Jusoh, Ahmad & Khoshnoudi, Masoumeh, 2017. "A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1298-1322.
    9. Khalid Mehmood & Yaser Iftikhar & Shouming Chen & Shaheera Amin & Alia Manzoor & Jinlong Pan, 2020. "Analysis of Inter-Temporal Change in the Energy and CO 2 Emissions Efficiency of Economies: A Two Divisional Network DEA Approach," Energies, MDPI, vol. 13(13), pages 1-17, June.
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    12. Magdalena Osińska & Atif Maqbool Khan & Jacek Kwiatkowski, 2024. "Identifying Economic Factors of Renewable Energy Consumption—A Global Perspective," Energies, MDPI, vol. 17(15), pages 1-26, July.
    13. Lai, Aolin & Wang, Qunwei, 2024. "How coal de-capacity policy affects renewable energy development efficiency? Evidence from China," Energy, Elsevier, vol. 286(C).
    14. Rabie Said & Muhammad Ishaq Bhatti & Ahmed Imran Hunjra, 2022. "Toward Understanding Renewable Energy and Sustainable Development in Developing and Developed Economies: A Review," Energies, MDPI, vol. 15(15), pages 1-12, July.
    15. Wang, Yongpei & Yan, Qing, 2023. "Is cleaner more efficient? Exploring nonlinear impacts of renewable energy deployment on regional total factor energy efficiency," Renewable Energy, Elsevier, vol. 216(C).
    16. Fotio, Hervé Kaffo & Poumie, Boker & Baida, Louise Angèle & Nguena, Christian Lambert & Adams, Samuel, 2022. "A new look at the growth-renewable energy nexus: Evidence from a sectoral analysis in Sub-Saharan Africa," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 61-71.
    17. Chen, Nengcheng & Xu, Lei & Chen, Zeqiang, 2017. "Environmental efficiency analysis of the Yangtze River Economic Zone using super efficiency data envelopment analysis (SEDEA) and tobit models," Energy, Elsevier, vol. 134(C), pages 659-671.
    18. Fazil Gokgoz & Serap Pelin Turkoglu, 2017. "Investigating the energy efficiencies of OECD countries via a slack-based undesirable output model," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2017(3), pages 73-94.
    19. Thapar, Sapan & Sharma, Seema & Verma, Ashu, 2018. "Key determinants of wind energy growth in India: Analysis of policy and non-policy factors," Energy Policy, Elsevier, vol. 122(C), pages 622-638.
    20. Yu, Shiwei & Liu, Jie & Hu, Xing & Tian, Peng, 2022. "Does development of renewable energy reduce energy intensity? Evidence from 82 countries," Technological Forecasting and Social Change, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124006542. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.