IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v177y2019icp121-135.html
   My bibliography  Save this article

Predicting the performance of a micro gas turbine under solar-hybrid operation

Author

Listed:
  • Ssebabi, Brian
  • Dinter, Frank
  • van der Spuy, Johan
  • Schatz, Markus

Abstract

There are currently no commercial solar-hybrid gas turbine systems readily available off-the-shelf. Several operation and control challenges still exist, and significant development effort is still required to provide technically proven units. To address this gap, this study modeled the performance of a solar-hybrid micro gas turbine (MGT) system, considering both steady-state and transient operation. Based on the component matching, the equilibrium running point shifted on the compressor characteristic, to counter the additional system pressure losses, and ensure a useful work output, albeit with a reduced surge margin. Solar-hybrid operation was only possible for solar share of at least 20%, while the work output and cycle thermal efficiency drop below standard operation levels beyond certain solar share. In contrast to standard operation, a higher nominal work output of 20 kW, at a lower SFC of 0.0004 kg/kWh and a higher cycle thermal efficiency of 8% was predicted, the latter potentially increasing to 20% with recuperation. Solar-hybrid equilibrium running could eliminate the risk of running into compressor surge. The findings from this study should guide operation and control strategies for the proposed, and future solar-hybrid MGT systems, which should in turn contribute to their development and commercialization.

Suggested Citation

  • Ssebabi, Brian & Dinter, Frank & van der Spuy, Johan & Schatz, Markus, 2019. "Predicting the performance of a micro gas turbine under solar-hybrid operation," Energy, Elsevier, vol. 177(C), pages 121-135.
  • Handle: RePEc:eee:energy:v:177:y:2019:i:c:p:121-135
    DOI: 10.1016/j.energy.2019.04.064
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219306875
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.04.064?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberta De Robbio, 2023. "Micro Gas Turbine Role in Distributed Generation with Renewable Energy Sources," Energies, MDPI, vol. 16(2), pages 1-37, January.
    2. Ghavami, Mohsen & Al-Zaili, Jafar & Sayma, Abdulnaser I., 2022. "A methodology for techno-economic and operation strategy optimisation of micro gas turbine-based solar powered dish-engine systems," Energy, Elsevier, vol. 251(C).
    3. Yan, Manli & Yao, Zhang & Nutakki, Tirumala Uday Kumar & Kumar Agrawal, Manoj & Muhammad, Taseer & Albani, Aliashim & Zhao, Zhanping, 2023. "Design and evaluation of a novel heliostat-based combined cooling, heating, and power (CCHP) system: 3E analysis and multi-criteria optimization by response surface methodology (RSM)," Energy, Elsevier, vol. 285(C).
    4. Cao, Yan & Habibi, Hamed & Zoghi, Mohammad & Raise, Amir, 2021. "Waste heat recovery of a combined regenerative gas turbine - recompression supercritical CO2 Brayton cycle driven by a hybrid solar-biomass heat source for multi-generation purpose: 4E analysis and pa," Energy, Elsevier, vol. 236(C).
    5. Judit García-Ferrero & Irene Heras & María Jesús Santos & Rosa Pilar Merchán & Alejandro Medina & Antonio González & Antonio Calvo Hernández, 2020. "Thermodynamic and Cost Analysis of a Solar Dish Power Plant in Spain Hybridized with a Micro-Gas Turbine," Energies, MDPI, vol. 13(19), pages 1-24, October.
    6. Hachem, Joe & Schuhler, Thierry & Orhon, Dominique & Cuif-Sjostrand, Marianne & Zoughaib, Assaad & Molière, Michel, 2022. "Exhaust gas recirculation applied to single-shaft gas turbines: An energy and exergy approach," Energy, Elsevier, vol. 238(PB).
    7. Rovense, Francesco & Sebastián, Andrés & Abbas, Rubén & Romero, Manuel & González-Aguilar, José, 2023. "Performance map analysis of a solar-driven and fully unfired closed-cycle micro gas turbine," Energy, Elsevier, vol. 263(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:177:y:2019:i:c:p:121-135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.