IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i15p5597-d1202084.html
   My bibliography  Save this article

Optimal Participation of Co-Located Wind–Battery Plants in Sequential Electricity Markets

Author

Listed:
  • Rujie Zhu

    (Department of Wind and Energy Systems, Risø Campus, Technical University of Denmark (DTU), 4000 Roskilde, Denmark)

  • Kaushik Das

    (Department of Wind and Energy Systems, Risø Campus, Technical University of Denmark (DTU), 4000 Roskilde, Denmark)

  • Poul Ejnar Sørensen

    (Department of Wind and Energy Systems, Risø Campus, Technical University of Denmark (DTU), 4000 Roskilde, Denmark)

  • Anca Daniela Hansen

    (Department of Wind and Energy Systems, Risø Campus, Technical University of Denmark (DTU), 4000 Roskilde, Denmark)

Abstract

Since hybrid power plants (HPPs) play an intensive role in the energy supply balance of future energy systems, there is today increased attention on co-located wind–battery HPPs both in industry and academia. This paper proposes an energy management system (EMS) methodology for wind–battery plants participating in two sequential electricity markets, namely in the spot market (SM) and the balancing market (BM). The proposed and implemented EMS consists of day-ahead (DA) spot market optimization, hour-ahead (HA) balancing market optimization, and intra-hour re-dispatch optimization to allow HPPs to achieve energy arbitrage, to offer regulation power at the HA stage, and to reduce real-time imbalances. The optimization models used in the EMS incorporate an accurate battery degradation model and grid connection constraints. This paper presents a detailed case analysis of the profitability of HPPs in markets towards 2030 based on the proposed EMS. Furthermore, the value of intra-hour re-dispatch optimization in improving the feasibility of generation plans, as well as the impacts of overplanting on wind energy curtailment and battery degradation, is also investigated based on the proposed EMS.

Suggested Citation

  • Rujie Zhu & Kaushik Das & Poul Ejnar Sørensen & Anca Daniela Hansen, 2023. "Optimal Participation of Co-Located Wind–Battery Plants in Sequential Electricity Markets," Energies, MDPI, vol. 16(15), pages 1-17, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5597-:d:1202084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/15/5597/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/15/5597/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuwei Wang & Huiru Zhao & Peng Li, 2019. "Optimal Offering and Operating Strategies for Wind-Storage System Participating in Spot Electricity Markets with Progressive Stochastic-Robust Hybrid Optimization Model Series," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-19, July.
    2. Xu, Xiao & Hu, Weihao & Cao, Di & Huang, Qi & Liu, Zhou & Liu, Wen & Chen, Zhe & Blaabjerg, Frede, 2020. "Scheduling of wind-battery hybrid system in the electricity market using distributionally robust optimization," Renewable Energy, Elsevier, vol. 156(C), pages 47-56.
    3. Loukatou, Angeliki & Johnson, Paul & Howell, Sydney & Duck, Peter, 2021. "Optimal valuation of wind energy projects co-located with battery storage," Applied Energy, Elsevier, vol. 283(C).
    4. Mohamed, Mohamed A. & Jin, Tao & Su, Wencong, 2020. "An effective stochastic framework for smart coordinated operation of wind park and energy storage unit," Applied Energy, Elsevier, vol. 272(C).
    5. Crespo-Vazquez, Jose L. & Carrillo, C. & Diaz-Dorado, E. & Martinez-Lorenzo, Jose A. & Noor-E-Alam, Md., 2018. "A machine learning based stochastic optimization framework for a wind and storage power plant participating in energy pool market," Applied Energy, Elsevier, vol. 232(C), pages 341-357.
    6. Gea-Bermúdez, Juan & Pade, Lise-Lotte & Koivisto, Matti Juhani & Ravn, Hans, 2020. "Optimal generation and transmission development of the North Sea region: Impact of grid architecture and planning horizon," Energy, Elsevier, vol. 191(C).
    7. Al-Lawati, Razan A.H. & Crespo-Vazquez, Jose L. & Faiz, Tasnim Ibn & Fang, Xin & Noor-E-Alam, Md., 2021. "Two-stage stochastic optimization frameworks to aid in decision-making under uncertainty for variable resource generators participating in a sequential energy market," Applied Energy, Elsevier, vol. 292(C).
    8. Shen, Jian-jian & Cheng, Chun-tian & Jia, Ze-bin & Zhang, Yang & Lv, Quan & Cai, Hua-xiang & Wang, Bang-can & Xie, Meng-fei, 2022. "Impacts, challenges and suggestions of the electricity market for hydro-dominated power systems in China," Renewable Energy, Elsevier, vol. 187(C), pages 743-759.
    9. Koivisto, Matti & Jónsdóttir, Guðrún Margrét & Sørensen, Poul & Plakas, Konstantinos & Cutululis, Nicolaos, 2020. "Combination of meteorological reanalysis data and stochastic simulation for modelling wind generation variability," Renewable Energy, Elsevier, vol. 159(C), pages 991-999.
    10. Crespo-Vazquez, Jose L. & Carrillo, C. & Diaz-Dorado, E. & Martinez-Lorenzo, Jose A. & Noor-E-Alam, Md, 2018. "Evaluation of a data driven stochastic approach to optimize the participation of a wind and storage power plant in day-ahead and reserve markets," Energy, Elsevier, vol. 156(C), pages 278-291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Al-Lawati, Razan A.H. & Crespo-Vazquez, Jose L. & Faiz, Tasnim Ibn & Fang, Xin & Noor-E-Alam, Md., 2021. "Two-stage stochastic optimization frameworks to aid in decision-making under uncertainty for variable resource generators participating in a sequential energy market," Applied Energy, Elsevier, vol. 292(C).
    2. Silva, Ana R. & Pousinho, H.M.I. & Estanqueiro, Ana, 2022. "A multistage stochastic approach for the optimal bidding of variable renewable energy in the day-ahead, intraday and balancing markets," Energy, Elsevier, vol. 258(C).
    3. Finnah, Benedikt & Gönsch, Jochen & Ziel, Florian, 2022. "Integrated day-ahead and intraday self-schedule bidding for energy storage systems using approximate dynamic programming," European Journal of Operational Research, Elsevier, vol. 301(2), pages 726-746.
    4. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Gibescu, Madeleine, 2024. "Light robust co-optimization of energy and reserves in the day-ahead electricity market," Applied Energy, Elsevier, vol. 353(PA).
    5. Murcia, Juan Pablo & Koivisto, Matti Juhani & Luzia, Graziela & Olsen, Bjarke T. & Hahmann, Andrea N. & Sørensen, Poul Ejnar & Als, Magnus, 2022. "Validation of European-scale simulated wind speed and wind generation time series," Applied Energy, Elsevier, vol. 305(C).
    6. Omoyele, Olalekan & Hoffmann, Maximilian & Koivisto, Matti & Larrañeta, Miguel & Weinand, Jann Michael & Linßen, Jochen & Stolten, Detlef, 2024. "Increasing the resolution of solar and wind time series for energy system modeling: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Harri Aaltonen & Seppo Sierla & Rakshith Subramanya & Valeriy Vyatkin, 2021. "A Simulation Environment for Training a Reinforcement Learning Agent Trading a Battery Storage," Energies, MDPI, vol. 14(17), pages 1-20, September.
    8. Benedikt Finnah, 2022. "Optimal bidding functions for renewable energies in sequential electricity markets," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(1), pages 1-27, March.
    9. Alqahtani, Mohammed & Hu, Mengqi, 2022. "Dynamic energy scheduling and routing of multiple electric vehicles using deep reinforcement learning," Energy, Elsevier, vol. 244(PA).
    10. Moradi-Sepahvand, Mojtaba & Amraee, Turaj, 2021. "Integrated expansion planning of electric energy generation, transmission, and storage for handling high shares of wind and solar power generation," Applied Energy, Elsevier, vol. 298(C).
    11. Tomasz Wołowiec & Iuliia Myroshnychenko & Ihor Vakulenko & Sylwester Bogacki & Anna Maria Wiśniewska & Svitlana Kolosok & Vitaliy Yunger, 2022. "International Impact of COVID-19 on Energy Economics and Environmental Pollution: A Scoping Review," Energies, MDPI, vol. 15(22), pages 1-26, November.
    12. Zou, Yidong & Hu, Wenqing & Xiao, Zhihuai & Wang, Yunhe & Chen, Jinbao & Zheng, Yang & Qian, Jing & Zeng, Yun, 2023. "Design of intelligent nonlinear robust controller for hydro-turbine governing system based on state-dynamic-measurement hybrid feedback linearization method," Renewable Energy, Elsevier, vol. 204(C), pages 635-651.
    13. Chabok, Hossein & Aghaei, Jamshid & Sheikh, Morteza & Roustaei, Mahmoud & Zare, Mohsen & Niknam, Taher & Lehtonen, Matti & Shafi-khah, Miadreza & Catalão, João P.S., 2022. "Transmission-constrained optimal allocation of price-maker wind-storage units in electricity markets," Applied Energy, Elsevier, vol. 310(C).
    14. Jun Dong & Anyuan Fu & Yao Liu & Shilin Nie & Peiwen Yang & Linpeng Nie, 2019. "Two-Stage Optimization Model for Two-Side Daily Reserve Capacity of a Power System Considering Demand Response and Wind Power Consumption," Sustainability, MDPI, vol. 11(24), pages 1-22, December.
    15. Olsen, Karen Pardos & Zong, Yi & You, Shi & Bindner, Henrik & Koivisto, Matti & Gea-Bermúdez, Juan, 2020. "Multi-timescale data-driven method identifying flexibility requirements for scenarios with high penetration of renewables," Applied Energy, Elsevier, vol. 264(C).
    16. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    17. Zhang, Pengfei & Ma, Chao & Lian, Jijian & Li, Peiyao & Liu, Lu, 2024. "Medium- and long-term operation optimization of the LCHES-WP hybrid power system considering the settlement rules of the electricity trading market," Applied Energy, Elsevier, vol. 359(C).
    18. Jerez Monsalves, Juan & Bergaentzlé, Claire & Keles, Dogan, 2023. "Impacts of flexible-cooling and waste-heat recovery from data centres on energy systems: A Danish case study," Energy, Elsevier, vol. 281(C).
    19. Elshurafa, Amro M. & Alatawi, Hatem & Hasanov, Fakhri J. & Algahtani, Goblan J. & Felder, Frank A., 2022. "Cost, emission, and macroeconomic implications of diesel displacement in the Saudi agricultural sector: Options and policy insights," Energy Policy, Elsevier, vol. 168(C).
    20. Fahd A. Alturki & Emad Mahrous Awwad, 2021. "Sizing and Cost Minimization of Standalone Hybrid WT/PV/Biomass/Pump-Hydro Storage-Based Energy Systems," Energies, MDPI, vol. 14(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:15:p:5597-:d:1202084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.