IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124014447.html
   My bibliography  Save this article

Investigation into the hydrogen inhibition mechanism of Platycladus orientalis leaf extract as a biodegradation inhibitor for waste aluminum-silicon alloy dust in wet dust collectors

Author

Listed:
  • Hao, Tengteng
  • Xu, Kaili
  • Wang, Haojie
  • Zheng, Xin
  • Li, Jishuo
  • Yu, Yanwu
  • Liu, Zhenhua

Abstract

This study investigates the risk of hydrogen explosion caused by waste metal dust encountering water in wet dust collectors. It proposes using renewable plant extracts to suppress hydrogen evolution from aluminum-silicon (Al-Si) alloy dust, aiming to achieve intrinsically safer production. Platycladus orientalis leaf extract (POLE) was prepared using water as a solvent. Hydrogen inhibition experiments, material characterization, and theoretical calculations were conducted to evaluate the effect of POLE on waste Al-Si dust. The inhibition experiments demonstrated that POLE exhibits excellent inhibitory performance. At a POLE concentration of 2.0 g/L, the hydrogen inhibition efficiency reaches 97.71 % after 22 h, with a reaction rate constant of 8.9708 × 10−5, approaching zero. This efficiency remained stable over 5 days. POLE formed a uniform, dense protective film on the Al-Si dust surface, with a contact angle of 99.23°. FTIR spectra revealed absorption peaks corresponding to POLE functional groups and Al-O bonds, indicating that successfully adsorption of POLE through both physical and chemical interactions. Finally, theoretical calculations were performed to further explain the hydrogen inhibition mechanism of POLE, supplementing and confirming the characterization data. This study inhibited hydrogen production from waste dust, offering a new approach to enhancing the hydrogen production rate from recycled Al scraps.

Suggested Citation

  • Hao, Tengteng & Xu, Kaili & Wang, Haojie & Zheng, Xin & Li, Jishuo & Yu, Yanwu & Liu, Zhenhua, 2024. "Investigation into the hydrogen inhibition mechanism of Platycladus orientalis leaf extract as a biodegradation inhibitor for waste aluminum-silicon alloy dust in wet dust collectors," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014447
    DOI: 10.1016/j.renene.2024.121376
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124014447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121376?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124014447. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.