The Impact of the Configuration of a Hydrogen Refueling Station on Risk Level
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
- Xuchao Zhang & Gang Qiu & Shali Wang & Jiaxi Wu & Yunan Peng, 2022. "Hydrogen Leakage Simulation and Risk Analysis of Hydrogen Fueling Station in China," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
- Yang, Yuyan & Xu, Xiao & Luo, Yichen & Liu, Junyong & Hu, Weihao, 2024. "Distributionally robust planning method for expressway hydrogen refueling station powered by a wind-PV system," Renewable Energy, Elsevier, vol. 225(C).
- Shen, Yahao & Lv, Hong & Hu, Yaqi & Li, Jianwei & Lan, Hao & Zhang, Cunman, 2023. "Preliminary hazard identification for qualitative risk assessment on onboard hydrogen storage and supply systems of hydrogen fuel cell vehicles," Renewable Energy, Elsevier, vol. 212(C), pages 834-854.
- Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Fabian Scheepers & Markus Stähler & Andrea Stähler & Edward Rauls & Martin Müller & Marcelo Carmo & Werner Lehnert, 2020. "Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization," Energies, MDPI, vol. 13(3), pages 1-21, February.
- Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
- Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
- Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
- Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
- Lorenzi, Guido & Lanzini, Andrea & Santarelli, Massimo & Martin, Andrew, 2017. "Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation," Energy, Elsevier, vol. 141(C), pages 1524-1537.
- Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
- Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
- Fan, Mu-wei & Ao, Chu-chu & Wang, Xiao-rong, 2019. "Comprehensive method of natural gas pipeline efficiency evaluation based on energy and big data analysis," Energy, Elsevier, vol. 188(C).
- AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
- Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
- Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
- Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
- Shu, Zhiyong & Liang, Wenqing & Zheng, Xiaohong & Lei, Gang & Cao, Peng & Dai, Wenxiao & Qian, Hua, 2021. "Dispersion characteristics of hydrogen leakage: Comparing the prediction model with the experiment," Energy, Elsevier, vol. 236(C).
- Gkanas, Evangelos I. & Christodoulou, Christodoulos N. & Tzamalis, George & Stamatakis, Emmanuel & Chroneos, Alexander & Deligiannis, Konstantinos & Karagiorgis, George & Stubos, Athanasios K., 2020. "Numerical investigation on the operation and energy demand of a seven-stage metal hydride hydrogen compression system for Hydrogen Refuelling Stations," Renewable Energy, Elsevier, vol. 147(P1), pages 164-178.
- Nikolaos Chalkiadakis & Emmanuel Stamatakis & Melina Varvayanni & Athanasios Stubos & Georgios Tzamalis & Theocharis Tsoutsos, 2023. "A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System," Energies, MDPI, vol. 16(17), pages 1-20, August.
- Nicolle, Adrien & Massol, Olivier, 2023. "Build more and regret less: Oversizing H2 and CCS pipeline systems under uncertainty," Energy Policy, Elsevier, vol. 179(C).
- Lee, Leok & Ingenhoven, Philip & Saw, Woei L. & Nathan, Graham J ‘Gus’, 2024. "The techno-economics of transmitting heat at high temperatures in insulated pipes over large distances," Applied Energy, Elsevier, vol. 358(C).
More about this item
Keywords
hydrogen; refueling station; hazard; fire; explosion; risk;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5504-:d:1513393. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.