IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i21p5504-d1513393.html
   My bibliography  Save this article

The Impact of the Configuration of a Hydrogen Refueling Station on Risk Level

Author

Listed:
  • Andrzej Rusin

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

  • Katarzyna Stolecka-Antczak

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

  • Wojciech Kosman

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

  • Krzysztof Rusin

    (Department of Power Engineering and Turbomachinery, Silesian University of Technology, Konarskiego 18, 44-100 Gliwice, Poland)

Abstract

The paper discusses potential hazards at hydrogen refueling stations for transportation vehicles: cars and trucks. The main hazard analyzed here is an uncontrolled gas release due to a failure in one of the structures in the station: storage tanks of different pressure levels or a dispenser. This may lead to a hydrogen cloud occurring near the source of the release or at a given distance. The range of the cloud was analyzed in connection to the amount of the released gas and the wind velocity. The results of the calculations were compared for chosen structures in the station. Then potential fires and explosions were investigated. The hazard zones were calculated with respect to heat fluxes generated in the fires and the overpressure generated in explosions. The maximum ranges of these zones vary from about 14 to 30 m and from about 9 to 14 m for a fires and an explosions of hydrogen, respectively. Finally, human death probabilities are presented as functions of the distance from the sources of the uncontrolled hydrogen releases. These are shown for different amounts and pressures of the released gas. In addition, the risk of human death is determined along with the area, where it reaches the highest value in the whole station. The risk of human death in this area is 1.63 × 10 −5 [1/year]. The area is approximately 8 square meters.

Suggested Citation

  • Andrzej Rusin & Katarzyna Stolecka-Antczak & Wojciech Kosman & Krzysztof Rusin, 2024. "The Impact of the Configuration of a Hydrogen Refueling Station on Risk Level," Energies, MDPI, vol. 17(21), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5504-:d:1513393
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/21/5504/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/21/5504/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Witkowski, Andrzej & Rusin, Andrzej & Majkut, Mirosław & Stolecka, Katarzyna, 2017. "Comprehensive analysis of hydrogen compression and pipeline transportation from thermodynamics and safety aspects," Energy, Elsevier, vol. 141(C), pages 2508-2518.
    2. Xuchao Zhang & Gang Qiu & Shali Wang & Jiaxi Wu & Yunan Peng, 2022. "Hydrogen Leakage Simulation and Risk Analysis of Hydrogen Fueling Station in China," Sustainability, MDPI, vol. 14(19), pages 1-19, September.
    3. Yang, Yuyan & Xu, Xiao & Luo, Yichen & Liu, Junyong & Hu, Weihao, 2024. "Distributionally robust planning method for expressway hydrogen refueling station powered by a wind-PV system," Renewable Energy, Elsevier, vol. 225(C).
    4. Shen, Yahao & Lv, Hong & Hu, Yaqi & Li, Jianwei & Lan, Hao & Zhang, Cunman, 2023. "Preliminary hazard identification for qualitative risk assessment on onboard hydrogen storage and supply systems of hydrogen fuel cell vehicles," Renewable Energy, Elsevier, vol. 212(C), pages 834-854.
    5. Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabian Scheepers & Markus Stähler & Andrea Stähler & Edward Rauls & Martin Müller & Marcelo Carmo & Werner Lehnert, 2020. "Improving the Efficiency of PEM Electrolyzers through Membrane-Specific Pressure Optimization," Energies, MDPI, vol. 13(3), pages 1-21, February.
    2. Ana-Maria Chirosca & Eugen Rusu & Viorel Minzu, 2024. "Green Hydrogen—Production and Storage Methods: Current Status and Future Directions," Energies, MDPI, vol. 17(23), pages 1-27, November.
    3. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    4. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    5. Wu, Tianyi & Wang, Junfeng & Zhang, Wei & Zuo, Lei & Xu, Haojie & Li, Bin, 2023. "Plasma bubble characteristics and hydrogen production performance of methanol decomposition by liquid phase discharge," Energy, Elsevier, vol. 273(C).
    6. Peydayesh, Mohammad & Mohammadi, Toraj & Bakhtiari, Omid, 2017. "Effective hydrogen purification from methane via polyimide Matrimid® 5218- Deca-dodecasil 3R type zeolite mixed matrix membrane," Energy, Elsevier, vol. 141(C), pages 2100-2107.
    7. Im, Junyoung & Gye, Hye-Ri & Wilailak, Supaporn & Yoon, Ha-Jun & Kim, Yongsoo & Kim, Hyungchan & Lee, Chul-Jin, 2024. "Hydrogen liquefaction process using carbon dioxide as a pre-coolant for carbon capture and utilization," Energy, Elsevier, vol. 307(C).
    8. Lorenzi, Guido & Lanzini, Andrea & Santarelli, Massimo & Martin, Andrew, 2017. "Exergo-economic analysis of a direct biogas upgrading process to synthetic natural gas via integrated high-temperature electrolysis and methanation," Energy, Elsevier, vol. 141(C), pages 1524-1537.
    9. Grzegorz Szamrej & Mirosław Karczewski, 2024. "Exploring Hydrogen-Enriched Fuels and the Promise of HCNG in Industrial Dual-Fuel Engines," Energies, MDPI, vol. 17(7), pages 1-51, March.
    10. Giuseppe Sdanghi & Gaël Maranzana & Alain Celzard & Vanessa Fierro, 2020. "Towards Non-Mechanical Hybrid Hydrogen Compression for Decentralized Hydrogen Facilities," Energies, MDPI, vol. 13(12), pages 1-27, June.
    11. Fan, Mu-wei & Ao, Chu-chu & Wang, Xiao-rong, 2019. "Comprehensive method of natural gas pipeline efficiency evaluation based on energy and big data analysis," Energy, Elsevier, vol. 188(C).
    12. AlZahrani, Abdullah A. & Dincer, Ibrahim, 2022. "Assessment of a thin-electrolyte solid oxide cell for hydrogen production," Energy, Elsevier, vol. 243(C).
    13. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    14. Bartela, Łukasz, 2020. "A hybrid energy storage system using compressed air and hydrogen as the energy carrier," Energy, Elsevier, vol. 196(C).
    15. Ibrahim, Omar S. & Singlitico, Alessandro & Proskovics, Roberts & McDonagh, Shane & Desmond, Cian & Murphy, Jerry D., 2022. "Dedicated large-scale floating offshore wind to hydrogen: Assessing design variables in proposed typologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    16. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    17. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    18. Shu, Zhiyong & Liang, Wenqing & Zheng, Xiaohong & Lei, Gang & Cao, Peng & Dai, Wenxiao & Qian, Hua, 2021. "Dispersion characteristics of hydrogen leakage: Comparing the prediction model with the experiment," Energy, Elsevier, vol. 236(C).
    19. Gkanas, Evangelos I. & Christodoulou, Christodoulos N. & Tzamalis, George & Stamatakis, Emmanuel & Chroneos, Alexander & Deligiannis, Konstantinos & Karagiorgis, George & Stubos, Athanasios K., 2020. "Numerical investigation on the operation and energy demand of a seven-stage metal hydride hydrogen compression system for Hydrogen Refuelling Stations," Renewable Energy, Elsevier, vol. 147(P1), pages 164-178.
    20. Nikolaos Chalkiadakis & Emmanuel Stamatakis & Melina Varvayanni & Athanasios Stubos & Georgios Tzamalis & Theocharis Tsoutsos, 2023. "A New Path towards Sustainable Energy Transition: Techno-Economic Feasibility of a Complete Hybrid Small Modular Reactor/Hydrogen (SMR/H2) Energy System," Energies, MDPI, vol. 16(17), pages 1-20, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:21:p:5504-:d:1513393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.