Seawater Treatment Technologies for Hydrogen Production by Electrolysis—A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Liu, Zhao & Han, Beibei & Lu, Zhiyi & Guan, Wanbing & Li, Yuanyuan & Song, Changjiang & Chen, Liang & Singhal, Subhash C., 2021. "Efficiency and stability of hydrogen production from seawater using solid oxide electrolysis cells," Applied Energy, Elsevier, vol. 300(C).
- Nusrat Jahan & Mohammed Tahmid & Afrina Zaman Shoronika & Athkia Fariha & Hridoy Roy & Md. Nahid Pervez & Yingjie Cai & Vincenzo Naddeo & Md. Shahinoor Islam, 2022. "A Comprehensive Review on the Sustainable Treatment of Textile Wastewater: Zero Liquid Discharge and Resource Recovery Perspectives," Sustainability, MDPI, vol. 14(22), pages 1-38, November.
- Bruce E. Logan & Menachem Elimelech, 2012. "Membrane-based processes for sustainable power generation using water," Nature, Nature, vol. 488(7411), pages 313-319, August.
- Kourougianni, Fanourios & Arsalis, Alexandros & Olympios, Andreas V. & Yiasoumas, Georgios & Konstantinou, Charalampos & Papanastasiou, Panos & Georghiou, George E., 2024. "A comprehensive review of green hydrogen energy systems," Renewable Energy, Elsevier, vol. 231(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiadong Tang & Yun Wang & Hongyang Yang & Qianqian Zhang & Ce Wang & Leyuan Li & Zilong Zheng & Yuhong Jin & Hao Wang & Yifan Gu & Tieyong Zuo, 2024. "All-natural 2D nanofluidics as highly-efficient osmotic energy generators," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Yang, Wei & Bao, Jingjing & Liu, Hongtao & Zhang, Jun & Guo, Lin, 2023. "Low-grade heat to hydrogen: Current technologies, challenges and prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
- Bui, Tri Quang & Magnussen, Ole-Petter & Cao, Vinh Duy & Wang, Wei & Kjøniksen, Anna-Lena & Aaker, Olav, 2021. "Osmotic engine converting energy from salinity difference to a hydraulic accumulator by utilizing polyelectrolyte hydrogels," Energy, Elsevier, vol. 232(C).
- Ana-Maria Chirosca & Eugen Rusu & Viorel Minzu, 2024. "Green Hydrogen—Production and Storage Methods: Current Status and Future Directions," Energies, MDPI, vol. 17(23), pages 1-27, November.
- Wan, Chun Feng & Chung, Tai-Shung, 2016. "Energy recovery by pressure retarded osmosis (PRO) in SWRO–PRO integrated processes," Applied Energy, Elsevier, vol. 162(C), pages 687-698.
- Hassan H. Hammud & Mohamad H. Hammoud & Aqeel A. Hussein & Youssef B. Fawaz & Malai Haniti Sheikh Abdul Hamid & Nadeem S. Sheikh, 2023. "Removal of Malachite Green Using Hydrochar from PALM Leaves," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
- He, Wei & Wang, Jihong, 2017. "Feasibility study of energy storage by concentrating/desalinating water: Concentrated Water Energy Storage," Applied Energy, Elsevier, vol. 185(P1), pages 872-884.
- Kang, Byeong Dong & Kim, Hyun Jung & Lee, Moon Gu & Kim, Dong-Kwon, 2015. "Numerical study on energy harvesting from concentration gradient by reverse electrodialysis in anodic alumina nanopores," Energy, Elsevier, vol. 86(C), pages 525-538.
- Jahangiri, Mehdi & Rezaei, Mostafa & Mostafaeipour, Ali & Goojani, Afsaneh Raiesi & Saghaei, Hamed & Hosseini Dehshiri, Seyyed Jalaladdin & Hosseini Dehshiri, Seyyed Shahabaddin, 2022. "Prioritization of solar electricity and hydrogen co-production stations considering PV losses and different types of solar trackers: A TOPSIS approach," Renewable Energy, Elsevier, vol. 186(C), pages 889-903.
- Sagar Roy & Smruti Ragunath, 2018. "Emerging Membrane Technologies for Water and Energy Sustainability: Future Prospects, Constraints and Challenges," Energies, MDPI, vol. 11(11), pages 1-32, November.
- Tan, Guangcai & Xu, Nan & Gao, Dingxue & Zhu, Xiuping, 2022. "Superabsorbent graphene oxide/carbon nanotube hybrid Poly(acrylic acid-co-acrylamide) hydrogels for efficient salinity gradient energy harvest," Energy, Elsevier, vol. 258(C).
- Andrea Zaffora & Andrea Culcasi & Luigi Gurreri & Alessandro Cosenza & Alessandro Tamburini & Monica Santamaria & Giorgio Micale, 2020. "Energy Harvesting by Waste Acid/Base Neutralization via Bipolar Membrane Reverse Electrodialysis," Energies, MDPI, vol. 13(20), pages 1-22, October.
- Maisonneuve, Jonathan & Pillay, Pragasen & Laflamme, Claude B., 2015. "Osmotic power potential in remote regions of Quebec," Renewable Energy, Elsevier, vol. 81(C), pages 62-70.
- Tran, Thomas T.D. & Smith, Amanda D., 2017. "fEvaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the U.S. energy sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1372-1388.
- Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- He, Wei & Wang, Yang & Elyasigomari, Vahid & Shaheed, Mohammad Hasan, 2016. "Evaluation of the detrimental effects in osmotic power assisted reverse osmosis (RO) desalination," Renewable Energy, Elsevier, vol. 93(C), pages 608-619.
- Chanda, Sourayon & Tsai, Peichun Amy, 2019. "Numerical simulation of renewable power generation using reverse electrodialysis," Energy, Elsevier, vol. 176(C), pages 531-543.
- Massimo Marino & Lorenza Misuri & Andrea Carati & Doriano Brogioli, 2014. "Proof-of-Concept of a Zinc-Silver Battery for the Extraction of Energy from a Concentration Difference," Energies, MDPI, vol. 7(6), pages 1-20, June.
- Di Michele, F. & Felaco, E. & Gasser, I. & Serbinovskiy, A. & Struchtrup, H., 2019. "Modeling, simulation and optimization of a pressure retarded osmosis power station," Applied Mathematics and Computation, Elsevier, vol. 353(C), pages 189-207.
- Zhao, Kai & Lu, Jiaxin & Le, Long & Coyle, Chris & Marina, Olga A. & Huang, Kevin, 2024. "A high-performance intermediate temperature reversible solid oxide cell with a new barrier layer free oxygen electrode," Applied Energy, Elsevier, vol. 361(C).
More about this item
Keywords
electrolysis; hydrogen; desalination; water treatment; reverse osmosis; multiple-effect distillation; multi-stage flash; ion exchange; electrodeionization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:24:p:6255-:d:1541713. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.