IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v235y2024ics0960148124013855.html
   My bibliography  Save this article

Effects of cushion gas pressure and operating parameters on the capacity of hydrogen storage in lined rock caverns (LRC)

Author

Listed:
  • Bowen, Hu
  • Xianzhen, Mi
  • Yu, Liyuan
  • Shuchen, Li
  • Wei, Li
  • Chao, Wei

Abstract

Hydrogen storage in lined rock cavern (LRC) provides versatile site selection, safety, and stability, making it a crucial option. In this study, a thermodynamic mathematical model was established to describe hydrogen storage in LRC. This model is based on the principles of mass, momentum, and energy conservation while accounting for the authentic compressibility of hydrogen. The thermodynamic fluctuations throughout the seasonal cycle in LRC were computed using the COMSOL Multiphysics software. The results indicate that when the hydrogen storage reaches the operating pressure, the lower the cushion gas pressure, the greater the hydrogen injection amount, and the higher the utilization rate of storage capacity. With a cushion gas pressure of 3 MPa, the storage capacity utilization rate exceeds that at 15 MPa by 41 %. The injection rate of 0.5 kg/s results in a temperature increase of 12 °C compared to 0.27 kg/s, indicating twice the temperature rise at the 0.27 kg/s injection rate. An increase in injection temperature corresponds to higher temperature within the hydrogen storage cavern upon completion of gas injection, thereby reducing the time needed for gas injection to reach maximum operating pressure. A lower initial cavern temperature results in a longer time for hydrogen storage to reach maximum operating pressure.

Suggested Citation

  • Bowen, Hu & Xianzhen, Mi & Yu, Liyuan & Shuchen, Li & Wei, Li & Chao, Wei, 2024. "Effects of cushion gas pressure and operating parameters on the capacity of hydrogen storage in lined rock caverns (LRC)," Renewable Energy, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013855
    DOI: 10.1016/j.renene.2024.121317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124013855
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aleksandra Małachowska & Natalia Łukasik & Joanna Mioduska & Jacek Gębicki, 2022. "Hydrogen Storage in Geological Formations—The Potential of Salt Caverns," Energies, MDPI, vol. 15(14), pages 1-19, July.
    2. Chai, Maojie & Chen, Zhangxin & Nourozieh, Hossein & Yang, Min, 2023. "Numerical simulation of large-scale seasonal hydrogen storage in an anticline aquifer: A case study capturing hydrogen interactions and cushion gas injection," Applied Energy, Elsevier, vol. 334(C).
    3. Heping Xie & Zhiyu Zhao & Tao Liu & Yifan Wu & Cheng Lan & Wenchuan Jiang & Liangyu Zhu & Yunpeng Wang & Dongsheng Yang & Zongping Shao, 2022. "A membrane-based seawater electrolyser for hydrogen generation," Nature, Nature, vol. 612(7941), pages 673-678, December.
    4. Xia, Caichu & Zhou, Yu & Zhou, Shuwei & Zhang, Pingyang & Wang, Fei, 2015. "A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns," Renewable Energy, Elsevier, vol. 74(C), pages 718-726.
    5. Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarmast, Sepideh & Rouindej, Kamyar & Fraser, Roydon A. & Dusseault, Maurice B., 2024. "Optimizing near-adiabatic compressed air energy storage (NA-CAES) systems: Sizing and design considerations," Applied Energy, Elsevier, vol. 357(C).
    2. Liu, Xinyu & Yang, Jianping & Yang, Chunhe & Zhang, Zheyuan & Chen, Weizhong, 2023. "Numerical simulation on cavern support of compressed air energy storage(CAES)considering thermo-mechanical coupling effect," Energy, Elsevier, vol. 282(C).
    3. Fang, Jiangyu & Ma, Hongling & Yang, Chunhe & Li, Hang & Zhu, Shijie & Nong, Xiaoli & Bi, Zhenhui, 2024. "Airtightness evaluation of lined caverns for compressed air energy storage under thermo-hydro-mechanical (THM) coupling," Energy, Elsevier, vol. 308(C).
    4. Hao Shi & Tanyuan Wang & Jianyun Liu & Weiwei Chen & Shenzhou Li & Jiashun Liang & Shuxia Liu & Xuan Liu & Zhao Cai & Chao Wang & Dong Su & Yunhui Huang & Lior Elbaz & Qing Li, 2023. "A sodium-ion-conducted asymmetric electrolyzer to lower the operation voltage for direct seawater electrolysis," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    5. Yang, Dechang & Wang, Ming & Yang, Ruiqi & Zheng, Yingying & Pandzic, Hrvoje, 2021. "Optimal dispatching of an energy system with integrated compressed air energy storage and demand response," Energy, Elsevier, vol. 234(C).
    6. Dariusz Knez & Omid Ahmad Mahmoudi Zamani, 2023. "Up-to-Date Status of Geoscience in the Field of Natural Hydrogen with Consideration of Petroleum Issues," Energies, MDPI, vol. 16(18), pages 1-17, September.
    7. Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.
    8. Corinna Köpke & Jennifer Mielniczek & Alexander Stolz, 2023. "Testing Resilience Aspects of Operation Options for Offshore Wind Farms beyond the End-of-Life," Energies, MDPI, vol. 16(12), pages 1-12, June.
    9. Erika Barison & Federica Donda & Barbara Merson & Yann Le Gallo & Arnaud Réveillère, 2023. "An Insight into Underground Hydrogen Storage in Italy," Sustainability, MDPI, vol. 15(8), pages 1-21, April.
    10. Silvestre, Inês & Pastor, Ricardo & Neto, Rui Costa, 2023. "Power losses in natural gas and hydrogen transmission in the Portuguese high-pressure network," Energy, Elsevier, vol. 272(C).
    11. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
    12. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    13. Zhou, Yu & Xia, Caichu & Zhao, Haibin & Mei, Songhua & Zhou, Shuwei, 2018. "An iterative method for evaluating air leakage from unlined compressed air energy storage (CAES) caverns," Renewable Energy, Elsevier, vol. 120(C), pages 434-445.
    14. Zeng, Zhen & Ma, Hongling & Yang, Chunhe & Liao, Youqiang & Wang, Xuan & Cai, Rui & Fang, Jiangyu, 2025. "Effect of the dynamic humid environment in salt caverns on their performance of compressed air energy storage: A modeling study of thermo-moisture-fluid dynamics," Applied Energy, Elsevier, vol. 377(PA).
    15. Liufei Shen & Cheng Zhang & Feiyue Shan & Long Chen & Shuai Liu & Zhiqiang Zheng & Litong Zhu & Jinduo Wang & Xingzheng Wu & Yujia Zhai, 2024. "Review and Prospects of Key Technologies for Integrated Systems in Hydrogen Production from Offshore Superconducting Wind Power," Energies, MDPI, vol. 18(1), pages 1-17, December.
    16. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    17. repec:ers:journl:v:xxiv:y:2021:i:3b:p:817-826 is not listed on IDEAS
    18. Krzysztof Polański, 2021. "Influence of the Variability of Compressed Air Temperature on Selected Parameters of the Deformation-Stress State of the Rock Mass Around a CAES Salt Cavern," Energies, MDPI, vol. 14(19), pages 1-28, September.
    19. Sixie Zhang & Yunan Wang & Shuyu Li & Zhongfeng Wang & Haocheng Chen & Li Yi & Xu Chen & Qihao Yang & Wenwen Xu & Aiying Wang & Zhiyi Lu, 2023. "Concerning the stability of seawater electrolysis: a corrosion mechanism study of halide on Ni-based anode," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    20. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    21. Zheng-Jie Chen & Jiuyi Dong & Jiajing Wu & Qiting Shao & Na Luo & Minwei Xu & Yuanmiao Sun & Yongbing Tang & Jing Peng & Hui-Ming Cheng, 2023. "Acidic enol electrooxidation-coupled hydrogen production with ampere-level current density," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.