IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v234y2024ics0960148124012369.html
   My bibliography  Save this article

Comprehensive evaluation of product characteristics and energy consumption in hydrothermal carbonization of food waste anaerobic digestate: A perspective on phosphorus recovery and fuel properties

Author

Listed:
  • Han, Mengxi
  • Liu, Hui
  • Chen, Dezhen
  • Feng, Yuheng
  • Tang, Yulin
  • Zhang, Qian
  • An, Qing
  • Hu, Weijie
  • Jin, Zechen
  • Yan, Kai

Abstract

Food waste digestate (FWD) is rich in organic matter and phosphorus(P) elements, making it a potential source for energy and P recovery. Hydrothermal carbonization (HTC) addresses FWD's dehydration and stability issues, improving hydrochar's fuel properties and P recovery in hydrothermal liquid. Experiments with various additives reveals 1M HCl's effectiveness, increasing P recovery by 88.31 % at 120 °C, decreasing hydrochar ash content by 21.42 %, and raising heating value by 45.01 %. Principal component analysis highlights the viability of acid treatment for P leaching and hydrochar enhancement, with pH as a crucial factor. HTC substantially reduces energy consumption by 57.42 % compared to direct drying. Hydrochar without additives shows potential as slow-release P fertilizers, with a 28.8 % increase in total phosphorus at 240 °C, where 99.4 % of P exists as apatite inorganic. Soil tests reveal differences with formic acid method in P availability, showing varying correlations with different P forms. This research offers insights for FWD resource utilization.

Suggested Citation

  • Han, Mengxi & Liu, Hui & Chen, Dezhen & Feng, Yuheng & Tang, Yulin & Zhang, Qian & An, Qing & Hu, Weijie & Jin, Zechen & Yan, Kai, 2024. "Comprehensive evaluation of product characteristics and energy consumption in hydrothermal carbonization of food waste anaerobic digestate: A perspective on phosphorus recovery and fuel properties," Renewable Energy, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012369
    DOI: 10.1016/j.renene.2024.121168
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012369
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
    2. Liu, Xiaoguang & Wang, Qian & Tang, Yuanzhi & Pavlostathis, Spyros G., 2021. "A comparative study on biogas production, energy balance, and nutrients conversion with inter-stage hydrothermal treatment of sewage sludge," Applied Energy, Elsevier, vol. 288(C).
    3. Toor, Saqib Sohail & Rosendahl, Lasse & Rudolf, Andreas, 2011. "Hydrothermal liquefaction of biomass: A review of subcritical water technologies," Energy, Elsevier, vol. 36(5), pages 2328-2342.
    4. Erlach, B. & Harder, B. & Tsatsaronis, G., 2012. "Combined hydrothermal carbonization and gasification of biomass with carbon capture," Energy, Elsevier, vol. 45(1), pages 329-338.
    5. Elżbieta Goryńska-Goldmann & Michał Gazdecki & Krystyna Rejman & Sylwia Łaba & Joanna Kobus-Cisowska & Krystian Szczepański, 2021. "Magnitude, Causes and Scope for Reducing Food Losses in the Baking and Confectionery Industry—A Multi-Method Approach," Agriculture, MDPI, vol. 11(10), pages 1-20, September.
    6. Michela Lucian & Fabio Merzari & Michele Gubert & Antonio Messineo & Maurizio Volpe, 2021. "Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aragón-Briceño, C.I. & Pozarlik, A.K. & Bramer, E.A. & Niedzwiecki, Lukasz & Pawlak-Kruczek, H. & Brem, G., 2021. "Hydrothermal carbonization of wet biomass from nitrogen and phosphorus approach: A review," Renewable Energy, Elsevier, vol. 171(C), pages 401-415.
    2. Tekin, Kubilay & Karagöz, Selhan & Bektaş, Sema, 2014. "A review of hydrothermal biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 673-687.
    3. Kumar, Mayank & Olajire Oyedun, Adetoyese & Kumar, Amit, 2018. "A review on the current status of various hydrothermal technologies on biomass feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1742-1770.
    4. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Cheng, Chen & Guo, Qinghua & Ding, Lu & Raheem, Abdul & He, Qing & Shiung Lam, Su & Yu, Guangsuo, 2022. "Upgradation of coconut waste shell to value-added hydrochar via hydrothermal carbonization: Parametric optimization using response surface methodology," Applied Energy, Elsevier, vol. 327(C).
    6. Gao, Ying & Wang, Xianhua & Wang, Jun & Li, Xiangpeng & Cheng, Jianjun & Yang, Haiping & Chen, Hanping, 2013. "Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth," Energy, Elsevier, vol. 58(C), pages 376-383.
    7. Zhao, Peitao & Shen, Yafei & Ge, Shifu & Chen, Zhenqian & Yoshikawa, Kunio, 2014. "Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment," Applied Energy, Elsevier, vol. 131(C), pages 345-367.
    8. Hrnčič, Maša Knez & Kravanja, Gregor & Knez, Željko, 2016. "Hydrothermal treatment of biomass for energy and chemicals," Energy, Elsevier, vol. 116(P2), pages 1312-1322.
    9. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    10. Feng, Huan & Zhang, Bo & He, Zhixia & Wang, Shuang & Salih, Osman & Wang, Qian, 2018. "Study on co-liquefaction of Spirulina and Spartina alterniflora in ethanol-water co-solvent for bio-oil," Energy, Elsevier, vol. 155(C), pages 1093-1101.
    11. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    12. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    13. Magdeldin, Mohamed & Kohl, Thomas & Järvinen, Mika, 2017. "Techno-economic assessment of the by-products contribution from non-catalytic hydrothermal liquefaction of lignocellulose residues," Energy, Elsevier, vol. 137(C), pages 679-695.
    14. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Vinicius Cordeiro & Margarida Sá-da-Costa & Carlos Alpiarça & José Neves & Rui Galhano dos Santos & João Bordado & Rui Micaelo, 2024. "The Effect of a Liquified Wood Heavy Fraction on the Rheological Behaviour and Performance of Paving-Grade Bitumen," Sustainability, MDPI, vol. 16(3), pages 1-25, January.
    16. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    17. Xu, Donghai & Lin, Guike & Guo, Shuwei & Wang, Shuzhong & Guo, Yang & Jing, Zefeng, 2018. "Catalytic hydrothermal liquefaction of algae and upgrading of biocrude: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 103-118.
    18. Tahir H. Seehar & Saqib S. Toor & Ayaz A. Shah & Thomas H. Pedersen & Lasse A. Rosendahl, 2020. "Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction," Energies, MDPI, vol. 13(12), pages 1-18, June.
    19. Sapillado, Gilda & Zhang, Yuanhui & Summers, Sabrina & Ribeiro, Rogers & Tommaso, Giovana, 2024. "Energy recovery of residual yeast via hydrothermal liquefaction with multi-cycle reuse of the post-HTL wastewater and subsequent anaerobic digestion," Renewable Energy, Elsevier, vol. 236(C).
    20. Liu, Quan & Zhang, Guanyu & Liu, Mingyang & Kong, Ge & Xu, Ruolan & Han, Lujia & Zhang, Xuesong, 2022. "Fast hydrothermal liquefaction coupled with homogeneous catalysts to valorize livestock manure for enhanced biocrude oil and hydrochar production," Renewable Energy, Elsevier, vol. 198(C), pages 521-533.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:234:y:2024:i:c:s0960148124012369. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.