IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v327y2022ics0306261922013939.html
   My bibliography  Save this article

Upgradation of coconut waste shell to value-added hydrochar via hydrothermal carbonization: Parametric optimization using response surface methodology

Author

Listed:
  • Cheng, Chen
  • Guo, Qinghua
  • Ding, Lu
  • Raheem, Abdul
  • He, Qing
  • Shiung Lam, Su
  • Yu, Guangsuo

Abstract

The utilization of biomass energy is desirable to achieve carbon neutrality in the world. Hydrothermal carbonization of coconut shell was performed using center composite design with an aid of response surface methodology to determine the individual effects and combined effects of parameters on responses. The experimental design incorporates two variables and three responses. More specifically, the effects of temperature (180–220 °C) and hold time (0–60 min) on hydrochar yield, higher heating value (HHV) and energy yield were investigated. According to the results, hydrochar yield varies monotonically with temperature and hold time. With increasing temperature and hold time, hydrochar yield was dropped gradually. The highest hydrochar yield of 75.67 % was obtained at 180 °C-0 min and the lowest hydrochar yield of 63.13 % was achieved at 220 °C-60 min. HHV showed opposite trend to hydrochar yield, reaching a maximum value of 29.39 MJ/kg at 220 °C-60 min. The change in energy yield was influenced by the variation of hydrochar yield and HHV and does not change monotonically with temperature or time. It reaches the maximum value 90.83 % at 200 °C-0 min. Furthermore, to select best operating conditions, a comprehensive evaluation of the experiments was conducted based on the overall desirability. A series of characterization experiments were conducted on selected hydrochar samples. The results of functional group and pore structure changes showed that raw biomass has converted into value-added products with stable structure properties. In conclusion, hydrothermal carbonization as a pretreatment for upgrading coconut shells is a feasible process and can be used for biofuels production.

Suggested Citation

  • Cheng, Chen & Guo, Qinghua & Ding, Lu & Raheem, Abdul & He, Qing & Shiung Lam, Su & Yu, Guangsuo, 2022. "Upgradation of coconut waste shell to value-added hydrochar via hydrothermal carbonization: Parametric optimization using response surface methodology," Applied Energy, Elsevier, vol. 327(C).
  • Handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013939
    DOI: 10.1016/j.apenergy.2022.120136
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922013939
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120136?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Heidari, Mohammad & Salaudeen, Shakirudeen & Arku, Precious & Acharya, Bishnu & Tasnim, Syeda & Dutta, Animesh, 2021. "Development of a mathematical model for hydrothermal carbonization of biomass: Comparison of experimental measurements with model predictions," Energy, Elsevier, vol. 214(C).
    2. Kang, Kang & Nanda, Sonil & Sun, Guotao & Qiu, Ling & Gu, Yongqing & Zhang, Tianle & Zhu, Mingqiang & Sun, Runcang, 2019. "Microwave-assisted hydrothermal carbonization of corn stalk for solid biofuel production: Optimization of process parameters and characterization of hydrochar," Energy, Elsevier, vol. 186(C).
    3. Yu, Yang & Lei, Zhongfang & Yang, Xi & Yang, Xiaojing & Huang, Weiwei & Shimizu, Kazuya & Zhang, Zhenya, 2018. "Hydrothermal carbonization of anaerobic granular sludge: Effect of process temperature on nutrients availability and energy gain from produced hydrochar," Applied Energy, Elsevier, vol. 229(C), pages 88-95.
    4. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    5. Wang, Liping & Chang, Yuzhi & Li, Aimin, 2019. "Hydrothermal carbonization for energy-efficient processing of sewage sludge: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 423-440.
    6. Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
    7. Wang, Guangwei & Zhang, Jianliang & Lee, Jui-Yuan & Mao, Xiaoming & Ye, Lian & Xu, Wanren & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Wang, Chuan, 2020. "Hydrothermal carbonization of maize straw for hydrochar production and its injection for blast furnace," Applied Energy, Elsevier, vol. 266(C).
    8. Michela Lucian & Fabio Merzari & Michele Gubert & Antonio Messineo & Maurizio Volpe, 2021. "Industrial-Scale Hydrothermal Carbonization of Agro-Industrial Digested Sludge: Filterability Enhancement and Phosphorus Recovery," Sustainability, MDPI, vol. 13(16), pages 1-15, August.
    9. Hoque, M.M & Bhattacharya, S.C, 2001. "Fuel characteristics of gasified coconut shell in a fluidized and a spouted bed reactor," Energy, Elsevier, vol. 26(1), pages 101-110.
    10. Wang, Ruikun & Liu, Senyang & Xue, Qiao & Lin, Kai & Yin, Qianqian & Zhao, Zhenghui, 2022. "Analysis and prediction of characteristics for solid product obtained by hydrothermal carbonization of biomass components," Renewable Energy, Elsevier, vol. 183(C), pages 575-585.
    11. Daniel Reißmann & Daniela Thrän & Dennis Blöhse & Alberto Bezama, 2021. "Hydrothermal carbonization for sludge disposal in Germany: A comparative assessment for industrial‐scale scenarios in 2030," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 720-734, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Balmuk, Gizem & Cay, Hakan & Duman, Gozde & Kantarli, Ismail Cem & Yanik, Jale, 2023. "Hydrothermal carbonization of olive oil industry waste into solid fuel: Fuel characteristics and combustion performance," Energy, Elsevier, vol. 278(C).
    2. Leng, Lijian & Zhou, Junhui & Zhang, Weijin & Chen, Jiefeng & Wu, Zhibin & Xu, Donghai & Zhan, Hao & Yuan, Xingzhong & Xu, Zhengyong & Peng, Haoyi & Yang, Zequn & Li, Hailong, 2024. "Machine-learning-aided hydrochar production through hydrothermal carbonization of biomass by engineering operating parameters and/or biomass mixture recipes," Energy, Elsevier, vol. 288(C).
    3. Zeng, Mingxun & Ge, Zefeng & Wu, Yuqing & Ma, Yuna & Zha, Zhenting & Hou, Zenghui & Zhang, Huiyan, 2024. "Energy utilization of takeaway waste: Components separation and fuel preparation employing hydrothermal carbonization and gasification," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    2. Siti Zaharah Roslan & Siti Fairuz Zainudin & Alijah Mohd Aris & Khor Bee Chin & Mohibah Musa & Ahmad Rafizan Mohamad Daud & Syed Shatir A. Syed Hassan, 2023. "Hydrothermal Carbonization of Sewage Sludge into Solid Biofuel: Influences of Process Conditions on the Energetic Properties of Hydrochar," Energies, MDPI, vol. 16(5), pages 1-16, March.
    3. Cheng, Chen & Ding, Lu & Guo, Qinghua & He, Qing & Gong, Yan & Alexander, Kozlov N. & Yu, Guangsuo, 2022. "Process analysis and kinetic modeling of coconut shell hydrothermal carbonization," Applied Energy, Elsevier, vol. 315(C).
    4. Kossińska, Nina & Krzyżyńska, Renata & Ghazal, Heba & Jouhara, Hussam, 2023. "Hydrothermal carbonisation of sewage sludge and resulting biofuels as a sustainable energy source," Energy, Elsevier, vol. 275(C).
    5. Zhuang, Xiuzheng & Liu, Jianguo & Zhang, Qi & Wang, Chenguang & Zhan, Hao & Ma, Longlong, 2022. "A review on the utilization of industrial biowaste via hydrothermal carbonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    6. Liu, Quan & Zhang, Guanyu & Kong, Ge & Liu, Mingyang & Cao, Tianqi & Guo, Zhirui & Zhang, Xuesong & Han, Lujia, 2023. "Valorizing manure waste into green coal-like hydrochar: Parameters study, physicochemical characteristics, combustion behaviors and kinetics," Renewable Energy, Elsevier, vol. 216(C).
    7. Pecchi, Matteo & Patuzzi, Francesco & Benedetti, Vittoria & Di Maggio, Rosa & Baratieri, Marco, 2020. "Kinetic analysis of hydrothermal carbonization using high-pressure differential scanning calorimetry applied to biomass," Applied Energy, Elsevier, vol. 265(C).
    8. Mitchell Ubene & Mohammad Heidari & Animesh Dutta, 2022. "Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review," Energies, MDPI, vol. 15(6), pages 1-28, March.
    9. Samuel Carrasco & Ernesto Pino-Cortés & Andrés Barra-Marín & Alejandro Fierro-Gallegos & Marcelo León, 2022. "Use of Hydrochar Produced by Hydrothermal Carbonization of Lignocellulosic Biomass for Thermal Power Plants in Chile: A Techno-Economic and Environmental Study," Sustainability, MDPI, vol. 14(13), pages 1-17, June.
    10. Octávio Alves & Luís Calado & Roberta M. Panizio & Catarina Nobre & Eliseu Monteiro & Paulo Brito & Margarida Gonçalves, 2022. "Gasification of Solid Recovered Fuels with Variable Fractions of Polymeric Materials," Energies, MDPI, vol. 15(21), pages 1-19, November.
    11. Sun, Minmin & Zhang, Jianliang & Li, Kejiang & Barati, Mansoor & Liu, Zhibin, 2022. "Co-gasification characteristics of coke blended with hydro-char and pyro-char from bamboo," Energy, Elsevier, vol. 241(C).
    12. Tiago Teribele & Maria Elizabeth Gemaque Costa & Conceição de Maria Sales da Silva & Lia Martins Pereira & Lucas Pinto Bernar & Douglas Alberto Rocha de Castro & Fernanda Paula da Costa Assunção & Mar, 2023. "Hydrothermal Carbonization of Corn Stover: Structural Evolution of Hydro-Char and Degradation Kinetics," Energies, MDPI, vol. 16(7), pages 1-22, April.
    13. Gheorghe Lazaroiu & Lucian Mihaescu & Gabriel Negreanu & Constantin Pana & Ionel Pisa & Alexandru Cernat & Dana-Alexandra Ciupageanu, 2018. "Experimental Investigations of Innovative Biomass Energy Harnessing Solutions," Energies, MDPI, vol. 11(12), pages 1-18, December.
    14. Andrea Di Giuliano & Stefania Lucantonio & Katia Gallucci, 2021. "Devolatilization of Residual Biomasses for Chemical Looping Gasification in Fluidized Beds Made Up of Oxygen-Carriers," Energies, MDPI, vol. 14(2), pages 1-16, January.
    15. Pablo J. Arauzo & María Atienza-Martínez & Javier Ábrego & Maciej P. Olszewski & Zebin Cao & Andrea Kruse, 2020. "Combustion Characteristics of Hydrochar and Pyrochar Derived from Digested Sewage Sludge," Energies, MDPI, vol. 13(16), pages 1-15, August.
    16. Zhang, Hanfei & Wang, Ligang & Pérez-Fortes, Mar & Van herle, Jan & Maréchal, François & Desideri, Umberto, 2020. "Techno-economic optimization of biomass-to-methanol with solid-oxide electrolyzer," Applied Energy, Elsevier, vol. 258(C).
    17. Śliz, Maciej & Wilk, Małgorzata, 2020. "A comprehensive investigation of hydrothermal carbonization: Energy potential of hydrochar derived from Virginia mallow," Renewable Energy, Elsevier, vol. 156(C), pages 942-950.
    18. Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
    19. Amira Alazmi & Sabina A. Nicolae & Pierpaolo Modugno & Bashir E. Hasanov & Maria M. Titirici & Pedro M. F. J. Costa, 2021. "Activated Carbon from Palm Date Seeds for CO 2 Capture," IJERPH, MDPI, vol. 18(22), pages 1-11, November.
    20. Oliveira, Verónica & Kirkelund, Gunvor M. & Horta, Carmo & Labrincha, João & Dias-Ferreira, Celia, 2019. "Improving the energy efficiency of an electrodialytic process to extract phosphorus from municipal solid waste digestate through different strategies," Applied Energy, Elsevier, vol. 247(C), pages 182-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:327:y:2022:i:c:s0306261922013939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.