IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v233y2024ics0960148124012485.html
   My bibliography  Save this article

Constructing oxygen vacancies by selective anion doping in high entropy perovskite oxide for water splitting

Author

Listed:
  • Wang, Ziqi
  • Han, Shaoxiong
  • Zhang, Yanlan
  • Wang, Xiaomin
  • Bai, Qiang
  • Wang, Yongzhen

Abstract

High entropy perovskite oxide (HEPO) is a potential electrocatalyst for the oxygen evolution reaction (OER), but insufficient activity remains a problem. Oxygen vacancies can activate the lattice oxygen to induce the lattice oxygen-mediated mechanism (LOM), which can avoid the kinetic limitation present in adsorbate evolution mechanism (AEM), thereby improving the OER activity. Herein, we select the appropriate doping element (S) through analysis of ionic radius, electronegativity, and oxygen vacancy formation energy, and report an effective two-step oxygen vacancy strategy for introducing oxygen vacancies into HEPO through electrospinning and sulfurization treatment. This strategy optimizes the eg orbital filling electron number and significantly increases the active area, oxygen vacancy content and electroconductivity. Furthermore, the apparent pH dependence and the TMA+ inhibition phenomenon suggest the involvement of the LOM. Consequently, the resulting S/LMO-E has a lower overpotential (314 mV at 10 mA cm−2) and faster kinetics, and shows excellent stability. Meanwhile, the water splitting is achieved at 1.59 V to afford 10 mA cm−2 current density for S/LMO-E⎪⎢Pt/C, which is smaller than that of RuO2⎪⎢Pt/C (1.62 V). This work provides an attractive OER electrocatalyst for efficient water splitting to produce renewable hydrogen and opens a new way for the design of effective and stable high entropy material electrocatalysts.

Suggested Citation

  • Wang, Ziqi & Han, Shaoxiong & Zhang, Yanlan & Wang, Xiaomin & Bai, Qiang & Wang, Yongzhen, 2024. "Constructing oxygen vacancies by selective anion doping in high entropy perovskite oxide for water splitting," Renewable Energy, Elsevier, vol. 233(C).
  • Handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012485
    DOI: 10.1016/j.renene.2024.121180
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124012485
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121180?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:233:y:2024:i:c:s0960148124012485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.