IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp751-760.html
   My bibliography  Save this article

CoMoO4 nanoparticles decorated ultrathin nanoplates constructed porous flower as an electrocatalyst toward overall water splitting and Zn-air batteries

Author

Listed:
  • Wang, Jianzhi
  • Guo, Ziyi
  • Liu, Manyu
  • Wang, Yijuan
  • Liu, Haiyan
  • Wu, Li
  • Xue, Yanan
  • Cai, Ning
  • Li, Hui
  • Yu, Faquan

Abstract

The design of low-cost, short time, mass preparation and high-efficiency of electrocatalysts for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and zinc air batteries are highly challenging. Herein, we design a bifunctional chrysanthemum-like electrocatalysts (Cu(OH)2@CoMoO4·0.9H2O/CF) for highly efficient electrochemical water splitting by a simple and highly controllable two-step method in a few hours. This unique hierarchical electrocatalyst has porous structure and short diffusion paths, which can promote charge transfer, ion and water diffusion, and rapidly release hydrogen and oxygen bubbles. The obtained Cu(OH)2@CoMoO4·0.9H2O/CF composite exhibits low overpotentials of 57 mV at −10 mA cm−2 toward the HER, which is superior to most of the previously reported CoMoO4-based electrocatalysts. And the Cu(OH)2@CoMoO4·0.9H2O/CF exhibits excellent performance of 355 mV at 100 mA cm−2 toward the OER. Benefiting from the unique hierarchical heterostructure and the coupling effect between the inner and outer layers, the Cu(OH)2@CoMoO4·0.9H2O/CF catalysts were endowed with high activity for water splitting.

Suggested Citation

  • Wang, Jianzhi & Guo, Ziyi & Liu, Manyu & Wang, Yijuan & Liu, Haiyan & Wu, Li & Xue, Yanan & Cai, Ning & Li, Hui & Yu, Faquan, 2023. "CoMoO4 nanoparticles decorated ultrathin nanoplates constructed porous flower as an electrocatalyst toward overall water splitting and Zn-air batteries," Renewable Energy, Elsevier, vol. 212(C), pages 751-760.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:751-760
    DOI: 10.1016/j.renene.2023.05.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812300647X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li-Qiang Mai & Fan Yang & Yun-Long Zhao & Xu Xu & Lin Xu & Yan-Zhu Luo, 2011. "Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anil Kumar Yedluri & Eswar Reddy Araveeti & Hee-Je Kim, 2019. "Facilely Synthesized NiCo 2 O 4 /NiCo 2 O 4 Nanofile Arrays Supported on Nickel Foam by a Hydrothermal Method and Their Excellent Performance for High-Rate Supercapacitance," Energies, MDPI, vol. 12(7), pages 1-11, April.
    2. C Karthikeyan & R Dhilip Kumar & J Anandha Raj & S Karuppuchamy, 2020. "One pot and large-scale synthesis of nanostructured metal sulfides: Synergistic effect on supercapacitor performance," Energy & Environment, , vol. 31(8), pages 1367-1384, December.
    3. Anil Kumar Yedluri & Tarugu Anitha & Hee-Je Kim, 2019. "Fabrication of Hierarchical NiMoO 4 /NiMoO 4 Nanoflowers on Highly Conductive Flexible Nickel Foam Substrate as a Capacitive Electrode Material for Supercapacitors with Enhanced Electrochemical Perfor," Energies, MDPI, vol. 12(6), pages 1-11, March.
    4. Sharifi, Farrokh & Ghobadian, Sasan & Cavalcanti, Flavia R. & Hashemi, Nastaran, 2015. "Paper-based devices for energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1453-1472.
    5. Yizhi Yan & Haolin Tang & Fan Wu & Rui Wang & Mu Pan, 2017. "One-Step Self-Assembly Synthesis α-Fe 2 O 3 with Carbon-Coated Nanoparticles for Stabilized and Enhanced Supercapacitors Electrode," Energies, MDPI, vol. 10(9), pages 1-13, August.
    6. Ikkurthi Kanaka Durga & Kummara Venkata Guru Raghavendra & Naga Bhushanam Kundakarla & Suresh Alapati & Jin-Woo Ahn & Sunkara Srinivasa Rao, 2021. "Facile Synthesis of Coral Reef-Like ZnO/CoS 2 Nanostructure on Nickel Foam as an Advanced Electrode Material for High-Performance Supercapacitors," Energies, MDPI, vol. 14(16), pages 1-10, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:751-760. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.