IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v113y2016icp25-34.html
   My bibliography  Save this article

Sparsity-enhanced optimization for ejector performance prediction

Author

Listed:
  • Li, Fenglei
  • Wu, Changzhi
  • Wang, Xiangyu
  • Tian, Qi
  • Teo, Kok Lay

Abstract

Within a model of the ejector performance prediction, the influence of ejector component efficiencies is critical in the prediction accuracy of the model. In this paper, a unified method is developed based on sparsity-enhanced optimization to determine correlation equations of ejector component efficiencies in order to improve the prediction accuracy of the ejector performance. An ensemble algorithm that combines simulated annealing and gradient descent algorithm is proposed to obtain its global solution for the proposed optimization problem. The ejector performance prediction of a 1-D model in the literature is used as an example to illustrate and validate the proposed method. Tests results reveal that the maximum and average absolute errors for the ejector performance prediction are reduced much more when compared with existing results under the same experimental condition. Furthermore, the results indicate that the ratio of geometric parameters to operating parameters is a key factor affecting the ejector performance.

Suggested Citation

  • Li, Fenglei & Wu, Changzhi & Wang, Xiangyu & Tian, Qi & Teo, Kok Lay, 2016. "Sparsity-enhanced optimization for ejector performance prediction," Energy, Elsevier, vol. 113(C), pages 25-34.
  • Handle: RePEc:eee:energy:v:113:y:2016:i:c:p:25-34
    DOI: 10.1016/j.energy.2016.07.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216309653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.07.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Long, Qiang & Wu, Changzhi & Wang, Xiangyu, 2015. "A system of nonsmooth equations solver based upon subgradient method," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 284-299.
    2. Liu, Fang & Groll, Eckhard A. & Li, Daqing, 2012. "Investigation on performance of variable geometry ejectors for CO2 refrigeration cycles," Energy, Elsevier, vol. 45(1), pages 829-839.
    3. Chen, Xiangjie & Omer, Siddig & Worall, Mark & Riffat, Saffa, 2013. "Recent developments in ejector refrigeration technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 629-651.
    4. Chong, Daotong & Hu, Mengqi & Chen, Weixiong & Wang, Jinshi & Liu, Jiping & Yan, Junjie, 2014. "Experimental and numerical analysis of supersonic air ejector," Applied Energy, Elsevier, vol. 130(C), pages 679-684.
    5. Xu, Xiao Xiao & Liu, Chao & Fu, Xiang & Gao, Hong & Li, Yourong, 2015. "Energy and exergy analyses of a modified combined cooling, heating, and power system using supercritical CO2," Energy, Elsevier, vol. 86(C), pages 414-422.
    6. Yan, Gang & Bai, Tao & Yu, Jianlin, 2016. "Thermodynamic analysis on a modified ejector expansion refrigeration cycle with zeotropic mixture (R290/R600a) for freezers," Energy, Elsevier, vol. 95(C), pages 144-154.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fenglei Li & Zhao Chang & Qi Tian & Changzhi Wu & Xiangyu Wang, 2017. "Performance Predictions of Dry and Wet Vapors Ejectors Over Entire Operational Range," Energies, MDPI, vol. 10(7), pages 1-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bodys, Jakub & Smolka, Jacek & Palacz, Michal & Haida, Michal & Banasiak, Krzysztof & Nowak, Andrzej J. & Hafner, Armin, 2016. "Performance of fixed geometry ejectors with a swirl motion installed in a multi-ejector module of a CO2 refrigeration system," Energy, Elsevier, vol. 117(P2), pages 620-631.
    2. Jeon, Yongseok & Kim, Dongwoo & Jung, Jongho & Jang, Dong Soo & Kim, Yongchan, 2018. "Comparative performance evaluation of conventional and condenser outlet split ejector-based domestic refrigerator-freezers using R600a," Energy, Elsevier, vol. 161(C), pages 1085-1095.
    3. Shan, Yong & Zhang, Jing-zhou & Ren, Xiao-wen, 2018. "Numerical modeling on pumping performance of piccolo-tube multi-nozzles supersonic ejector in an oil radiator passage," Energy, Elsevier, vol. 158(C), pages 216-227.
    4. Miri, Seyedeh Mohadeseh & Farzaneh-Gord, Mahmood & Kianifar, Ali, 2023. "Triple-objective MPSO of zeotropic-fluid solar ejector cycle integrated with cold storage tank based on techno-economic criteria," Energy, Elsevier, vol. 283(C).
    5. Besagni, Giorgio & Mereu, Riccardo & Inzoli, Fabio, 2016. "Ejector refrigeration: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 373-407.
    6. Bai, Tao & Yan, Gang & Yu, Jianlin, 2015. "Thermodynamics analysis of a modified dual-evaporator CO2 transcritical refrigeration cycle with two-stage ejector," Energy, Elsevier, vol. 84(C), pages 325-335.
    7. Varga, Szabolcs & Oliveira, Armando C. & Palmero-Marrero, Anna & Vrba, Jakub, 2017. "Preliminary experimental results with a solar driven ejector air conditioner in Portugal," Renewable Energy, Elsevier, vol. 109(C), pages 83-92.
    8. Kang, Ligai & Yang, Junhong & An, Qingsong & Deng, Shuai & Zhao, Jun & Wang, Hui & Li, Zelin, 2017. "Effects of load following operational strategy on CCHP system with an auxiliary ground source heat pump considering carbon tax and electricity feed in tariff," Applied Energy, Elsevier, vol. 194(C), pages 454-466.
    9. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    10. Wang, Zefeng & Han, Wei & Zhang, Na & Liu, Meng & Jin, Hongguang, 2017. "Exergy cost allocation method based on energy level (ECAEL) for a CCHP system," Energy, Elsevier, vol. 134(C), pages 240-247.
    11. Zhang, Ying & Deng, Shuai & Ni, Jiaxin & Zhao, Li & Yang, Xingyang & Li, Minxia, 2017. "A literature research on feasible application of mixed working fluid in flexible distributed energy system," Energy, Elsevier, vol. 137(C), pages 377-390.
    12. Fatong Jia & Dazhang Yang & Jing Xie, 2021. "Numerical Investigation on the Performance of Two-Throat Nozzle Ejectors with Different Mixing Chamber Structural Parameters," Energies, MDPI, vol. 14(21), pages 1-16, October.
    13. Knut Emil Ringstad & Krzysztof Banasiak & Åsmund Ervik & Armin Hafner, 2022. "Swirl-Bypass Nozzle for CO 2 Two-Phase Ejectors: Numerical Design Exploration," Energies, MDPI, vol. 15(18), pages 1-30, September.
    14. Tang, Yongzhi & Liu, Zhongliang & Li, Yanxia & Shi, Can & Lv, Chen, 2019. "A combined pressure regulation technology with multi-optimization of the entrainment passage for performance improvement of the steam ejector in MED-TVC desalination system," Energy, Elsevier, vol. 175(C), pages 46-57.
    15. Anas F A Elbarghthi & Saleh Mohamed & Van Vu Nguyen & Vaclav Dvorak, 2020. "CFD Based Design for Ejector Cooling System Using HFOS (1234ze(E) and 1234yf)," Energies, MDPI, vol. 13(6), pages 1-19, March.
    16. Qin, Lei & Xie, Gongnan & Ma, Yuan & Li, Shulei, 2023. "Thermodynamic analysis and multi-objective optimization of a waste heat recovery system with a combined supercritical/transcritical CO2 cycle," Energy, Elsevier, vol. 265(C).
    17. Ali Aldrees, 2021. "Water management in Saudi Arabia: a case study of Makkah Al Mukarramah region," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13650-13666, September.
    18. Anas F. A. Elbarghthi & Mohammad Yousef Hdaib & Václav Dvořák, 2021. "A Novel Generator Design Utilised for Conventional Ejector Refrigeration Systems," Energies, MDPI, vol. 14(22), pages 1-22, November.
    19. Chao Li & Baigang Sun & Lingzhi Bao, 2024. "Coupling Global Parameters and Local Flow Optimization of a Pulsed Ejector for Proton Exchange Membrane Fuel Cells," Sustainability, MDPI, vol. 16(10), pages 1-22, May.
    20. Yiqiao Li & Shengqiang Shen & Chao Niu & Yali Guo & Liuyang Zhang, 2022. "The Effect of Different Pressure Conditions on Shock Waves in a Supersonic Steam Ejector," Energies, MDPI, vol. 15(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:113:y:2016:i:c:p:25-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.