IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011492.html
   My bibliography  Save this article

Analyzing energy transition for industry 4.0-driven hybrid energy system selection with advanced neural network-used multi-criteria decision-making technique

Author

Listed:
  • Liu, Peide
  • Eti, Serkan
  • Yüksel, Serhat
  • Dinçer, Hasan
  • Gökalp, Yaşar
  • Ergün, Edanur
  • Aysan, Ahmet Faruk

Abstract

This study aims to select the appropriate renewable energy alternatives for the efficiency of hybrid energy systems to increase energy transition performance. For this purpose, a novel neural network (NN)-based fuzzy decision-making model is constructed that has three different stages. In the first stage, NN-based fuzzy decision matrix is created. Secondly, 6 different variables based on industry 4.0 are weighted with the sine trigonometric Pythagorean fuzzy entropy technique. Additionally, another calculation has been implemented with criteria importance through intercriteria correlation (CRITIC) to identify the consistency of the results. Furthermore, in the third stage, considering 5 different renewable energy alternatives, 10 different combinations are identified for hybrid energy systems. The most effective alternatives are defined by the sine trigonometric Pythagorean fuzzy ranking technique by geometric mean of similarity ratio to optimal solution (RATGOS) method. Moreover, to test the validity of these results, another analysis is conducted using the additive ratio assessment (ARAS) technique. The main contribution of the study is that the optimal renewable energy combination required for an efficient hybrid energy system is determined by performing a priority analysis between the variables. This situation has a significant guiding feature for investors. Similarly, the development of the RATGOS technique both increases the methodological originality of the study and enables more accurate alternative ranking. It is identified that the results of all methods are similar. Therefore, this situation gives information about the coherency and validity of the findings. It is concluded that the most important criterion is real-time capability. It is also denoted that the best combination for hybrid energy systems is Solar-Wind.

Suggested Citation

  • Liu, Peide & Eti, Serkan & Yüksel, Serhat & Dinçer, Hasan & Gökalp, Yaşar & Ergün, Edanur & Aysan, Ahmet Faruk, 2024. "Analyzing energy transition for industry 4.0-driven hybrid energy system selection with advanced neural network-used multi-criteria decision-making technique," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011492
    DOI: 10.1016/j.renene.2024.121081
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121081?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Razzaq, Asif & Sharif, Arshian & Ozturk, Ilhan & Afshan, Sahar, 2023. "Dynamic and threshold effects of energy transition and environmental governance on green growth in COP26 framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    2. Ghandehariun, Samane & Ghandehariun, Amir M. & Ziabari, Nima Bahrami, 2023. "Performance prediction and optimization of a hybrid renewable-energy-based multigeneration system using machine learning," Energy, Elsevier, vol. 282(C).
    3. Eko Adhi Setiawan & Arighi Radevito & Khairiah Dewi, 2024. "A Combined Ranking and Sensitivity Analysis of Power Generation Using Multi-Criteria Decision-Making and Monte-Carlo Simulation," International Journal of Energy Economics and Policy, Econjournals, vol. 14(3), pages 358-367, May.
    4. Bashir, Muhammad Farhan & Shahbaz, Muhammad & Malik, Muhammad Nasir & Ma, Beiling & Wang, Jianming, 2023. "Energy transition, natural resource consumption and environmental degradation: The role of geopolitical risk in sustainable development," Resources Policy, Elsevier, vol. 85(PA).
    5. Wang, Jianda & Shahbaz, Muhammad & Dong, Kangyin & Dong, Xiucheng, 2023. "Renewable energy transition in global carbon mitigation: Does the use of metallic minerals matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 181(C).
    6. Zheng, Shuxian & Zhou, Xuanru & Tan, Zhanglu & Liu, Chan & Hu, Han & Yuan, Hui & Peng, Shengnan & Cai, Xiaomei, 2023. "Assessment of the global energy transition: Based on trade embodied energy analysis," Energy, Elsevier, vol. 273(C).
    7. Kheshti, Mostafa & Zhao, Xiaowei & Liang, Ting & Nie, Binjian & Ding, Yulong & Greaves, Deborah, 2022. "Liquid air energy storage for ancillary services in an integrated hybrid renewable system," Renewable Energy, Elsevier, vol. 199(C), pages 298-307.
    8. Lumin Shi & Man-Wen Tian & As’ad Alizadeh & Ardashir Mohammadzadeh & Sayyad Nojavan, 2023. "Information Gap Decision Theory-Based Risk-Averse Scheduling of a Combined Heat and Power Hybrid Energy System," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    9. Thirunavukkarasu, M. & Lala, Himadri & Sawle, Yashwant, 2023. "Techno-economic-environmental analysis of off-grid hybrid energy systems using honey badger optimizer," Renewable Energy, Elsevier, vol. 218(C).
    10. Piotr Hylla & Tomasz Trawiński & Bartosz Polnik & Wojciech Burlikowski & Dariusz Prostański, 2023. "Overview of Hybrid Energy Storage Systems Combined with RES in Poland," Energies, MDPI, vol. 16(15), pages 1-20, August.
    11. William Derigent & Olivier Cardin & Damien Trentesaux, 2021. "Industry 4.0: contributions of holonic manufacturing control architectures and future challenges," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1797-1818, October.
    12. Chaloner Chute & Tara French, 2019. "Introducing Care 4.0: An Integrated Care Paradigm Built on Industry 4.0 Capabilities," IJERPH, MDPI, vol. 16(12), pages 1-17, June.
    13. Liu, Huicong & Fu, Hailing & Sun, Lining & Lee, Chengkuo & Yeatman, Eric M., 2021. "Hybrid energy harvesting technology: From materials, structural design, system integration to applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Miguel Angelo Hemzo, 2023. "Strategical Satisfaction Management," Springer Books, in: Marketing Luxury Services, chapter 0, pages 189-202, Springer.
    15. Ahmad, Mahmood & Dai, Jiapeng & Mehmood, Usman & Abou Houran, Mohamad, 2023. "Renewable energy transition, resource richness, economic growth, and environmental quality: Assessing the role of financial globalization," Renewable Energy, Elsevier, vol. 216(C).
    16. Rasool, Muhammad Haseeb & Taylan, Onur & Perwez, Usama & Batunlu, Canras, 2023. "Comparative assessment of multi-objective optimization of hybrid energy storage system considering grid balancing," Renewable Energy, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiong, Zhiqiao & Hu, Jin & Li, Wenfeng, 2024. "From policy to practice: Enhancing enterprise productivity through energy transition initiatives," Energy, Elsevier, vol. 311(C).
    2. Liu, Mengzhou & Zhang, Yuan & Fu, Hailing & Qin, Yong & Ding, Ao & Yeatman, Eric M., 2023. "A seesaw-inspired bistable energy harvester with adjustable potential wells for self-powered internet of train monitoring," Applied Energy, Elsevier, vol. 337(C).
    3. Uz Zaman, Qamar & Zhao, Yuhuan & Zaman, Shah & Batool, Kiran & Nasir, Rabiya, 2024. "Reviewing energy efficiency and environmental consciousness in the minerals industry Amidst digital transition: A comprehensive review," Resources Policy, Elsevier, vol. 91(C).
    4. Fang, Shuya & Fang, Wei, 2023. "How fiscal decentralization and trade diversification influence sustainable development: Moderating role of resources dependency," Resources Policy, Elsevier, vol. 84(C).
    5. Jiao, Lei & Zhou, Dongjie & Xu, Runguo, 2024. "Resource dynamics and economic expansion: Unveiling the asymmetric effects of natural resources and FDI on economic growth with a lens on energy efficiency," Resources Policy, Elsevier, vol. 89(C).
    6. Dong, Zequn & Tan, Chaodan & Zhang, Wenxue & Zhang, Lixiang & Zhang, Lingran, 2024. "Are natural resources a blessing or a curse for renewable energy? Uncovering the role of regulatory quality and government effectiveness in mitigating the curse," Resources Policy, Elsevier, vol. 98(C).
    7. Liu, Mingyi & Qian, Feng & Mi, Jia & Zuo, Lei, 2022. "Biomechanical energy harvesting for wearable and mobile devices: State-of-the-art and future directions," Applied Energy, Elsevier, vol. 321(C).
    8. Xiaomeng Zhao & Kangyin Dong & Jun Zhao & Qingzhe Jiang, 2024. "RETRACTED ARTICLE: Paths to sustainable development in China: why green finance and green technology matter?," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-26, April.
    9. Hwang, Young Kyu & Sánchez Díez, Ángeles, 2024. "Renewable energy transition and green growth nexus in Latin America," Renewable and Sustainable Energy Reviews, Elsevier, vol. 198(C).
    10. Vaziri Rad, Mohammad Amin & Kasaeian, Alibakhsh & Niu, Xiaofeng & Zhang, Kai & Mahian, Omid, 2023. "Excess electricity problem in off-grid hybrid renewable energy systems: A comprehensive review from challenges to prevalent solutions," Renewable Energy, Elsevier, vol. 212(C), pages 538-560.
    11. Zhiwei Li & Yinghong Xu & Langyuan Wu & Jiaxin Cui & Hui Dou & Xiaogang Zhang, 2023. "Enabling giant thermopower by heterostructure engineering of hydrated vanadium pentoxide for zinc ion thermal charging cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    12. Chen, Fu & Zhang, Weiwei & Li, Fangfang & Sun, Yongtai & Yu, Huiyuan, 2024. "Does fintech positively moderate the impact of mineral resources on green growth? Role of economic policy uncertainty in OECD economies," Resources Policy, Elsevier, vol. 94(C).
    13. Wang, Jianda & Dong, Kangyin & Taghizadeh-Hesary, Farhad & Dong, Xiucheng, 2023. "Does industrial convergence mitigate CO2 emissions in China? A quasi-natural experiment on “Triple Play” Reform," Energy Economics, Elsevier, vol. 128(C).
    14. Ghandehariun, Samane & Ghandehariun, Amir M. & Bahrami Ziabari, Nima, 2024. "Complementary assessment and design optimization of a hybrid renewable energy system integrated with open-loop pumped hydro energy storage," Renewable Energy, Elsevier, vol. 227(C).
    15. Liu, Xinzhi & Qi, Nanjian & Dai, Keren & Yin, Yajiang & Zhao, Jiahao & Wang, Xiaofeng & You, Zheng, 2022. "Sponge Supercapacitor rule-based energy management strategy for wireless sensor nodes optimized by using dynamic programing algorithm," Energy, Elsevier, vol. 239(PE).
    16. Fan, Xiaoyu & Ji, Wei & Li, Junxian & Gao, Zhaozhao & Chen, Liubiao & Wang, Junjie, 2024. "Advancing liquid air energy storage with moving packed bed: Development and analysis from components to system level," Applied Energy, Elsevier, vol. 355(C).
    17. Bashir, Muhammad Farhan & Ma, Beiling & Sharif, Arshian & Ao, Tong & Koca, Kemal, 2023. "Nuclear energy consumption, energy access and energy poverty: Policy implications for the COP27 and environmental sustainability," Technology in Society, Elsevier, vol. 75(C).
    18. Li’ao Song & Cheng Jin, 2024. "RETRACTED ARTICLE: Tailoring social welfare and energy transition for an aging population," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-15, April.
    19. Chen, Shuiyang & Kuang, Haibo & Bin Meng,, 2024. "The dependence structures between geopolitical risks and energy prices: New evidence from regional heterogeneity and quantile-on-quantile perspective," Energy, Elsevier, vol. 310(C).
    20. Li, Qizhou & He, Lipeng & Lv, Xingqian & Liu, Zheming & Li, Zhenheng & Fan, Wei, 2025. "A piezoelectric energy harvester based on center of gravity shift," Applied Energy, Elsevier, vol. 377(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011492. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.