IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v232y2024ics0960148124011406.html
   My bibliography  Save this article

Influence of temperature dependent short-term storage on thermal runaway characteristics in lithium-ion batteries

Author

Listed:
  • Wang, Zhi
  • Zhao, Qingjie
  • Sun, Feng
  • Yin, Bo
  • An, Weiguang
  • Shi, Bobo

Abstract

In practical applications, lithium-ion batteries inevitably encounter short-term exposure to high or low temperatures due to geographical climate variations and specific usage scenarios. This study explored the impact of short-term storage at temperatures ranging from −40 to 60 °C on the thermal stability of batteries. Combustion behavior, onset time (tTR) and onset temperature (TTR) of thermal runaway (TR), flame heat flux and mass loss were measured. It demonstrates that following short-term high/low temperature storage, the amount of gas in the exhaust phase increased significantly, and the intensity of the flame jet was enhanced. The experimental results showed that the tTR and TTR initially increased and then decreased with the storage temperature decreased from 20 °C to −40 °C. High temperature storage led to earlier TR and lower TTR. Interestingly, storage at 0 °C caused a delay in the occurrence of TR. Furthermore, an analysis of the heat transfer process, spanning from the safety valve opening to the onset of TR, was performed by leveraging the characteristic time and temperature parameters observed during the TR process. The findings of this research contribute to enhancing the safety and reliability of battery applications, particularly in scenarios involving temperature variations and potential thermal risks.

Suggested Citation

  • Wang, Zhi & Zhao, Qingjie & Sun, Feng & Yin, Bo & An, Weiguang & Shi, Bobo, 2024. "Influence of temperature dependent short-term storage on thermal runaway characteristics in lithium-ion batteries," Renewable Energy, Elsevier, vol. 232(C).
  • Handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011406
    DOI: 10.1016/j.renene.2024.121072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124011406
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Tianfeng & Bai, Jinlong & Ouyang, Dongxu & Wang, Zhirong & Bai, Wei & Mao, Ning & Zhu, Yu, 2023. "Effect of aging temperature on thermal stability of lithium-ion batteries: Part A – High-temperature aging," Renewable Energy, Elsevier, vol. 203(C), pages 592-600.
    2. Li, Yunjian & Li, Kuining & Xie, Yi & Liu, Jiangyan & Fu, Chunyun & Liu, Bin, 2020. "Optimized charging of lithium-ion battery for electric vehicles: Adaptive multistage constant current–constant voltage charging strategy," Renewable Energy, Elsevier, vol. 146(C), pages 2688-2699.
    3. Ruiz, V. & Pfrang, A. & Kriston, A. & Omar, N. & Van den Bossche, P. & Boon-Brett, L., 2018. "A review of international abuse testing standards and regulations for lithium ion batteries in electric and hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1427-1452.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammadmahdi Ghiji & Vasily Novozhilov & Khalid Moinuddin & Paul Joseph & Ian Burch & Brigitta Suendermann & Grant Gamble, 2020. "A Review of Lithium-Ion Battery Fire Suppression," Energies, MDPI, vol. 13(19), pages 1-30, October.
    2. Ostanek, Jason K. & Li, Weisi & Mukherjee, Partha P. & Crompton, K.R. & Hacker, Christopher, 2020. "Simulating onset and evolution of thermal runaway in Li-ion cells using a coupled thermal and venting model," Applied Energy, Elsevier, vol. 268(C).
    3. Chen, Wanying & Gong, Yeming & Chen, Qi & Wang, Hongwei, 2024. "Does battery management matter? Performance evaluation and operating policies in a self-climbing robotic warehouse," European Journal of Operational Research, Elsevier, vol. 312(1), pages 164-181.
    4. Xiong, Wei & Xie, Fang & Xu, Gang & Li, Yumei & Li, Ben & Mo, Yimin & Ma, Fei & Wei, Keke, 2023. "Co-estimation of the model parameter and state of charge for retired lithium-ion batteries over a wide temperature range and battery degradation scope," Renewable Energy, Elsevier, vol. 218(C).
    5. Okay, Kamil & Eray, Sermet & Eray, Aynur, 2022. "Development of prototype battery management system for PV system," Renewable Energy, Elsevier, vol. 181(C), pages 1294-1304.
    6. E, Jiaqiang & Xiao, Hanxu & Tian, Sicheng & Huang, Yuxin, 2024. "A comprehensive review on thermal runaway model of a lithium-ion battery: Mechanism, thermal, mechanical, propagation, gas venting and combustion," Renewable Energy, Elsevier, vol. 229(C).
    7. David Marcos & Maitane Garmendia & Jon Crego & José Antonio Cortajarena, 2021. "Functional Safety BMS Design Methodology for Automotive Lithium-Based Batteries," Energies, MDPI, vol. 14(21), pages 1-19, October.
    8. Pedram Asef & Marzia Milan & Andrew Lapthorn & Sanjeevikumar Padmanaban, 2021. "Future Trends and Aging Analysis of Battery Energy Storage Systems for Electric Vehicles," Sustainability, MDPI, vol. 13(24), pages 1-28, December.
    9. Zhang, Guangxu & Wei, Xuezhe & Tang, Xuan & Zhu, Jiangong & Chen, Siqi & Dai, Haifeng, 2021. "Internal short circuit mechanisms, experimental approaches and detection methods of lithium-ion batteries for electric vehicles: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    10. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    11. Cao, Jiahao & He, Yangjing & Feng, Jinxin & Lin, Shao & Ling, Ziye & Zhang, Zhengguo & Fang, Xiaoming, 2020. "Mini-channel cold plate with nano phase change material emulsion for Li-ion battery under high-rate discharge," Applied Energy, Elsevier, vol. 279(C).
    12. Shen, Dongxu & Lyu, Chao & Yang, Dazhi & Hinds, Gareth & Wang, Lixin, 2023. "Connection fault diagnosis for lithium-ion battery packs in electric vehicles based on mechanical vibration signals and broad belief network," Energy, Elsevier, vol. 274(C).
    13. Gandoman, Foad H. & Jaguemont, Joris & Goutam, Shovon & Gopalakrishnan, Rahul & Firouz, Yousef & Kalogiannis, Theodoros & Omar, Noshin & Van Mierlo, Joeri, 2019. "Concept of reliability and safety assessment of lithium-ion batteries in electric vehicles: Basics, progress, and challenges," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Wang, Meng & Wu, Senming & Chen, Ying & Luan, Weiling, 2025. "The snowball effect in electrochemical degradation and safety evolution of lithium-ion batteries during long-term cycling," Applied Energy, Elsevier, vol. 378(PB).
    15. Pius Victor Chombo & Yossapong Laoonual & Somchai Wongwises, 2021. "Lessons from the Electric Vehicle Crashworthiness Leading to Battery Fire," Energies, MDPI, vol. 14(16), pages 1-21, August.
    16. Chen, Long & Li, Kuijie & Cao, Yuan-cheng & Feng, Xuning & Wu, Weixiong, 2025. "Multidimensional signal fusion strategy for battery thermal runaway warning towards multiple application scenarios," Applied Energy, Elsevier, vol. 377(PB).
    17. Fransson, Matilda & Broche, Ludovic & Reid, Hamish T. & Patel, Drasti & Rack, Alexander & Shearing, Paul R., 2024. "Investigating thermal runaway dynamics and integrated safety mechanisms of micro-batteries using high-speed X-ray imaging," Applied Energy, Elsevier, vol. 369(C).
    18. Ren, Dongsheng & Liu, Xiang & Feng, Xuning & Lu, Languang & Ouyang, Minggao & Li, Jianqiu & He, Xiangming, 2018. "Model-based thermal runaway prediction of lithium-ion batteries from kinetics analysis of cell components," Applied Energy, Elsevier, vol. 228(C), pages 633-644.
    19. Prakash Venugopal & Vigneswaran T., 2019. "State-of-Health Estimation of Li-ion Batteries in Electric Vehicle Using IndRNN under Variable Load Condition," Energies, MDPI, vol. 12(22), pages 1-29, November.
    20. Sofia Ubaldi & Marco Conti & Francesco Marra & Paola Russo, 2023. "Identification of Key Events and Emissions during Thermal Abuse Testing on NCA 18650 Cells," Energies, MDPI, vol. 16(7), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:232:y:2024:i:c:s0960148124011406. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.