IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v230y2024ics0960148124009509.html
   My bibliography  Save this article

Anaerobic treatment of fruit and vegetable wastewater using EGSB: From strategies for regulating over-acidification to microbial community

Author

Listed:
  • Xing, Xue
  • Wang, Xue-Ting
  • Zhao, Lei
  • Wang, Wei
  • Xing, Defeng
  • Ren, Nanqi
  • Lee, Duu-Jong
  • Chen, Chuan

Abstract

Fruit and vegetable waste (FVW) are characterized by high-water content. Solid-liquid separation of FVW by crushing-extrusion physical pre-treatment provides fruit and vegetable wastewater (FVWW), and then for anaerobic biological treatment to recover methane, which is considered a cost-effective approach. However, anaerobic treatment of FVWW faces difficulties with low methane productivity and over-accumulation of volatile fatty acids (VFAs). In this study, the expanded granular sludge bed (EGSB) reactor was used for the anaerobic treatment of FVWW and the regulatory strategy to alleviate over-acidification was proposed. When the influent chemical oxygen demand (COD) concentration was 10000 mg/L, the hydraulic retention time (HRT) was 2 days, the organic loading rate (OLR) reached 5 g COD/L/d, the maximum methane productivity reached 301.14 ± 2.32 mL/g COD with a COD removal rate of 96 % ± 2 %. Lower VFAs accumulation was observed when decreasing the influent COD concentration to the same OLR compared with extending HRT, resulting in 38.5 % higher methane productivity. Decreasing the influent COD concentration not only benefited the enrichment of acetogens and hydrogenotrophic methanogens but also specifically enriched syntrophic bacteria. The enhanced syntrophic acetogenesis and hydrogenotrophic methanogens maybe the main reasons for promoting the degradation of propionate and butyrate and improving the methane productivity.

Suggested Citation

  • Xing, Xue & Wang, Xue-Ting & Zhao, Lei & Wang, Wei & Xing, Defeng & Ren, Nanqi & Lee, Duu-Jong & Chen, Chuan, 2024. "Anaerobic treatment of fruit and vegetable wastewater using EGSB: From strategies for regulating over-acidification to microbial community," Renewable Energy, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009509
    DOI: 10.1016/j.renene.2024.120882
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124009509
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120882?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:230:y:2024:i:c:s0960148124009509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.