IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v177y2021icp967-975.html
   My bibliography  Save this article

Multiobjective energy management in battery-integrated home energy systems

Author

Listed:
  • Gholami, M.
  • Sanjari, M.J.

Abstract

The overall operational costs of home energy systems (HES) has been considered as an objective function (OF) by many articles. This paper shows that considering the energy cost as OF can lead to a decrease in the load elasticity against the electricity price, which can lead to demand response programs failure. So the distribution system operator (DSO) must stop this decline. A new index is introduced to calculate the responsiveness of the PV-integrated HES, based on which a new OF for home energy management system is proposed. This index shows the load elasticity against the electricity price. The relation between energy cost and load responsiveness index is investigated, and several scenarios are analyzed to demonstrate the applicability of the proposed approach in real cases. The proposed method is implemented to a PV- and ESS- integrated HES. The results show the relation between the responsiveness of the loads and the operational costs of home. A sensitivity analysis is added to the paper to show the robustness of the proposed control scheme.

Suggested Citation

  • Gholami, M. & Sanjari, M.J., 2021. "Multiobjective energy management in battery-integrated home energy systems," Renewable Energy, Elsevier, vol. 177(C), pages 967-975.
  • Handle: RePEc:eee:renene:v:177:y:2021:i:c:p:967-975
    DOI: 10.1016/j.renene.2021.05.162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812100851X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.05.162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Iwafune, Yumiko & Mori, Yuko & Kawai, Toshiaki & Yagita, Yoshie, 2017. "Energy-saving effect of automatic home energy report utilizing home energy management system data in Japan," Energy, Elsevier, vol. 125(C), pages 382-392.
    2. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    3. Nizami, M.S.H. & Haque, A.N.M.M. & Nguyen, P.H. & Hossain, M.J., 2019. "On the application of Home Energy Management Systems for power grid support," Energy, Elsevier, vol. 188(C).
    4. Janko, Samantha A. & Arnold, Michael R. & Johnson, Nathan G., 2016. "Implications of high-penetration renewables for ratepayers and utilities in the residential solar photovoltaic (PV) market," Applied Energy, Elsevier, vol. 180(C), pages 37-51.
    5. Perez, Richard & Rábago, Karl R. & Trahan, Mike & Rawlings, Lyle & Norris, Ben & Hoff, Tom & Putnam, Morgan & Perez, Marc, 2016. "Achieving very high PV penetration – The need for an effective electricity remuneration framework and a central role for grid operators," Energy Policy, Elsevier, vol. 96(C), pages 27-35.
    6. Mehrjerdi, Hasan, 2020. "Peer-to-peer home energy management incorporating hydrogen storage system and solar generating units," Renewable Energy, Elsevier, vol. 156(C), pages 183-192.
    7. Shakeri, Mohammad & Shayestegan, Mohsen & Reza, S.M. Salim & Yahya, Iskandar & Bais, Badariah & Akhtaruzzaman, Md & Sopian, Kamaruzzaman & Amin, Nowshad, 2018. "Implementation of a novel home energy management system (HEMS) architecture with solar photovoltaic system as supplementary source," Renewable Energy, Elsevier, vol. 125(C), pages 108-120.
    8. Zupančič, Jernej & Filipič, Bogdan & Gams, Matjaž, 2020. "Genetic-programming-based multi-objective optimization of strategies for home energy-management systems," Energy, Elsevier, vol. 203(C).
    9. Lu, Qing & Yu, Hao & Zhao, Kangli & Leng, Yajun & Hou, Jianchao & Xie, Pinjie, 2019. "Residential demand response considering distributed PV consumption: A model based on China's PV policy," Energy, Elsevier, vol. 172(C), pages 443-456.
    10. Kyritsis, A. & Voglitsis, D. & Papanikolaou, N. & Tselepis, S. & Christodoulou, C. & Gonos, I. & Kalogirou, S.A., 2017. "Evolution of PV systems in Greece and review of applicable solutions for higher penetration levels," Renewable Energy, Elsevier, vol. 109(C), pages 487-499.
    11. Hafiz Majid Hussain & Nadeem Javaid & Sohail Iqbal & Qadeer Ul Hasan & Khursheed Aurangzeb & Musaed Alhussein, 2018. "An Efficient Demand Side Management System with a New Optimized Home Energy Management Controller in Smart Grid," Energies, MDPI, vol. 11(1), pages 1-28, January.
    12. Mehrjerdi, Hasan & Hemmati, Reza, 2020. "Coordination of vehicle-to-home and renewable capacity resources for energy management in resilience and self-healing building," Renewable Energy, Elsevier, vol. 146(C), pages 568-579.
    13. Hou, Qingchun & Zhang, Ning & Du, Ershun & Miao, Miao & Peng, Fei & Kang, Chongqing, 2019. "Probabilistic duck curve in high PV penetration power system: Concept, modeling, and empirical analysis in China," Applied Energy, Elsevier, vol. 242(C), pages 205-215.
    14. Di Giorgio, Alessandro & Pimpinella, Laura, 2012. "An event driven Smart Home Controller enabling consumer economic saving and automated Demand Side Management," Applied Energy, Elsevier, vol. 96(C), pages 92-103.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Md. Sazal Miah & Molla Shahadat Hossain Lipu & Sheikh Tanzim Meraj & Kamrul Hasan & Shaheer Ansari & Taskin Jamal & Hasan Masrur & Rajvikram Madurai Elavarasan & Aini Hussain, 2021. "Optimized Energy Management Schemes for Electric Vehicle Applications: A Bibliometric Analysis towards Future Trends," Sustainability, MDPI, vol. 13(22), pages 1-38, November.
    2. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    3. Gupta, Rajat & Morey, Johanna, 2022. "Empirical evaluation of demand side response trials in UK dwellings with smart low carbon technologies," Renewable Energy, Elsevier, vol. 199(C), pages 993-1004.
    4. Elkholy, M.H. & Senjyu, Tomonobu & Elymany, Mahmoud & Gamil, Mahmoud M. & Talaat, M. & Masrur, Hasan & Ueda, Soichiro & Lotfy, Mohammed Elsayed, 2024. "Optimal resilient operation and sustainable power management within an autonomous residential microgrid using African vultures optimization algorithm," Renewable Energy, Elsevier, vol. 224(C).
    5. Zhang, Wen-Yi & Chen, Yue & Wang, Yi & Xu, Yunjian, 2023. "Equilibrium analysis of a peer-to-peer energy trading market with shared energy storage in a power transmission grid," Energy, Elsevier, vol. 274(C).
    6. Liu, Jizhen & Ma, Lifei & Wang, Qinghua, 2023. "Energy management method of integrated energy system based on collaborative optimization of distributed flexible resources," Energy, Elsevier, vol. 264(C).
    7. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Peer-to-Peer trading with Demand Response using proposed smart bidding strategy," Applied Energy, Elsevier, vol. 327(C).
    8. Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Binghui Han & Younes Zahraoui & Marizan Mubin & Saad Mekhilef & Mehdi Seyedmahmoudian & Alex Stojcevski, 2023. "Optimal Strategy for Comfort-Based Home Energy Management System Considering Impact of Battery Degradation Cost Model," Mathematics, MDPI, vol. 11(6), pages 1-26, March.
    2. Zhao, Xueyuan & Gao, Weijun & Qian, Fanyue & Ge, Jian, 2021. "Electricity cost comparison of dynamic pricing model based on load forecasting in home energy management system," Energy, Elsevier, vol. 229(C).
    3. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2022. "A Survey of Efficient Demand-Side Management Techniques for the Residential Appliance Scheduling Problem in Smart Homes," Energies, MDPI, vol. 15(8), pages 1-34, April.
    4. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    5. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    6. Nizami, Sohrab & Tushar, Wayes & Hossain, M.J. & Yuen, Chau & Saha, Tapan & Poor, H. Vincent, 2022. "Transactive energy for low voltage residential networks: A review," Applied Energy, Elsevier, vol. 323(C).
    7. Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Zhang, Heng & Zhang, Shenxi & Hu, Xiao & Cheng, Haozhong & Gu, Qingfa & Du, Mengke, 2022. "Parametric optimization-based peer-to-peer energy trading among commercial buildings considering multiple energy conversion," Applied Energy, Elsevier, vol. 306(PB).
    9. Ouedraogo, Kiswendsida Elias & Ekim, Pınar Oğuz & Demirok, Erhan, 2023. "Feasibility of low-cost energy management system using embedded optimization for PV and battery storage assisted residential buildings," Energy, Elsevier, vol. 271(C).
    10. Wang, Chuyao & Ji, Jie & Yang, Hongxing, 2024. "Day-ahead schedule optimization of household appliances for demand flexibility: Case study on PV/T powered buildings," Energy, Elsevier, vol. 289(C).
    11. Isaías Gomes & Karol Bot & Maria Graça Ruano & António Ruano, 2022. "Recent Techniques Used in Home Energy Management Systems: A Review," Energies, MDPI, vol. 15(8), pages 1-41, April.
    12. Mehrjerdi, Hasan, 2021. "Resilience oriented vehicle-to-home operation based on battery swapping mechanism," Energy, Elsevier, vol. 218(C).
    13. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    14. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2022. "Interpretable deep learning models for hourly solar radiation prediction based on graph neural network and attention," Applied Energy, Elsevier, vol. 321(C).
    15. Deng, S. & Wang, R.Z. & Dai, Y.J., 2014. "How to evaluate performance of net zero energy building – A literature research," Energy, Elsevier, vol. 71(C), pages 1-16.
    16. Zhang, Yang & Yang, Qingyu & Li, Donghe & An, Dou, 2022. "A reinforcement and imitation learning method for pricing strategy of electricity retailer with customers’ flexibility," Applied Energy, Elsevier, vol. 323(C).
    17. Elma, Onur & Selamogullari, Ugur Savas, 2015. "A new home energy management algorithm with voltage control in a smart home environment," Energy, Elsevier, vol. 91(C), pages 720-731.
    18. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    19. Rohde, Friederike & Quitzow, Leslie, 2021. "Digitale Energiezukünfte und ihre Wirkungsmacht: Visionen der smarten Energieversorgung zwischen Technikoptimismus und Nachhaltigkeit," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, pages 189-211.
    20. Younes Zahraoui & Ibrahim Alhamrouni & Saad Mekhilef & M. Reyasudin Basir Khan & Mehdi Seyedmahmoudian & Alex Stojcevski & Ben Horan, 2021. "Energy Management System in Microgrids: A Comprehensive Review," Sustainability, MDPI, vol. 13(19), pages 1-33, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:177:y:2021:i:c:p:967-975. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.