IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v228y2024ics0960148124007298.html
   My bibliography  Save this article

g-Functions for fields of series- and parallel-connected boreholes with variable fluid mass flow rate and reversible flow direction

Author

Listed:
  • Cimmino, Massimo

Abstract

A new methodology is developed for the calculation of g-functions for the simulation of geothermal bore fields in non-stationary conditions. The g-functions are able to represent the variations of fluid mass flow rate and reversible flow direction, and model the effect of these variations on the long-term ground temperature response. The thermal model is constructed by coupling an axially-discretized finite line source solution for the ground heat transfer, a thermal resistance circuit model for the interior of the boreholes, as well as connectivity relations between parallel- and series-connected boreholes. Simulation experiments show that the new g-functions are required for the accurate prediction of fluid temperatures in series-connected boreholes with variable mass flow rate and reversible flow direction. A simulation of a borehole thermal energy storage system of 144 boreholes over a period of 20 years shows a maximum absolute error of 0.65 °C. The new g-functions thus extend the simulation capabilities of g-functions to borehole thermal energy storage systems.

Suggested Citation

  • Cimmino, Massimo, 2024. "g-Functions for fields of series- and parallel-connected boreholes with variable fluid mass flow rate and reversible flow direction," Renewable Energy, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007298
    DOI: 10.1016/j.renene.2024.120661
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124007298
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120661?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:228:y:2024:i:c:s0960148124007298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.