IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v222y2024ics0960148123018402.html
   My bibliography  Save this article

RSM optimization of ultrasound-assisted melia dubia oil extraction with green solvents and their suitability for diesel engine applications

Author

Listed:
  • Paneerselvam, Purushothaman
  • Panithasan, Mebin Samuel
  • Venkadesan, Gnanamoorthi

Abstract

Melia-dubia, a member of the neem family, is recognized as a promising biodiesel feedstock due to its higher oil content. Hence, this study uses an ultrasound-assisted extraction method to focus on oil extraction from Melia-dubia seeds. Response surface methodology using a 3-factor, 3-level Box-Behnken design (BBD) optimized the oil yield using environmentally friendly solvents such as 2-Methyl tetrahydrofuran, Cyclopentyl methyl ether, and ethanol. They were utilized in the range of 4–8 mL/g. A maximum of 50.5 % yield was achieved using 2-methyl tetrahydrofuran solvent at the solvent-to-solid ratio of 6.98 mL/g at an extraction time of 87.6 min. Furthermore, the GCMS reveals the presence of higher levels of palmitic and linoleic acids in Melia-dubia oil. The obtained biodiesel was tested in a single-cylinder diesel engine at different BMEP values, where the MD20 blend exhibited a 3.75 % increase in brake thermal efficiency compared to diesel at higher BMEP conditions. Additionally, CO and smoke emissions demonstrated significant reductions of 13.08 % and 27.1 % for MD10, as well as 9.83 % and 16.78 % for MD20 blends, respectively, to the baseline diesel fuel. However, it is worth noting that there was a slight increase in NOx emissions for all blends compared to diesel.

Suggested Citation

  • Paneerselvam, Purushothaman & Panithasan, Mebin Samuel & Venkadesan, Gnanamoorthi, 2024. "RSM optimization of ultrasound-assisted melia dubia oil extraction with green solvents and their suitability for diesel engine applications," Renewable Energy, Elsevier, vol. 222(C).
  • Handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018402
    DOI: 10.1016/j.renene.2023.119925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123018402
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    2. Tavares, Gilmar Roberto & Massa, Thainara Bovo & Gonçalves, José Eduardo & da Silva, Camila & dos Santos, Wanderley Dantas, 2017. "Assessment of ultrasound-assisted extraction of crambe seed oil for biodiesel synthesis by in situ interesterification," Renewable Energy, Elsevier, vol. 111(C), pages 659-665.
    3. Oni, Babalola Aisosa & Oluwatosin, David, 2020. "Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 725-734.
    4. Srivastava, Anjana & Prasad, Ram, 2000. "Triglycerides-based diesel fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 4(2), pages 111-133, June.
    5. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2013. "Combustion performance and emission characteristics study of pine oil in a diesel engine," Energy, Elsevier, vol. 57(C), pages 344-351.
    6. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    2. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    3. Yesilyurt, Murat Kadir & Cesur, Cüneyt & Aslan, Volkan & Yilbasi, Zeki, 2020. "The production of biodiesel from safflower (Carthamus tinctorius L.) oil as a potential feedstock and its usage in compression ignition engine: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    5. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Tsai, Wen-Tien & Lin, Chih-Chung & Yeh, Ching-Wei, 2007. "An analysis of biodiesel fuel from waste edible oil in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(5), pages 838-857, June.
    7. Luigi Pari & Francesco Latterini & Walter Stefanoni, 2020. "Herbaceous Oil Crops, a Review on Mechanical Harvesting State of the Art," Agriculture, MDPI, vol. 10(8), pages 1-25, July.
    8. Ambat, Indu & Srivastava, Varsha & Sillanpää, Mika, 2018. "Recent advancement in biodiesel production methodologies using various feedstock: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 356-369.
    9. Li, Hao & Song, Chonglin & Lv, Gang & Pang, Huating & Qiao, Yuehan, 2017. "Assessment of the impact of post-injection on exhaust pollutants emitted from a diesel engine fueled with biodiesel," Renewable Energy, Elsevier, vol. 114(PB), pages 924-933.
    10. Haşimoğlu, Can & Ciniviz, Murat & Özsert, İbrahim & İçingür, Yakup & Parlak, Adnan & Sahir Salman, M., 2008. "Performance characteristics of a low heat rejection diesel engine operating with biodiesel," Renewable Energy, Elsevier, vol. 33(7), pages 1709-1715.
    11. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    12. Malhotra, Rashi & Ali, Amjad, 2019. "5-Na/ZnO doped mesoporous silica as reusable solid catalyst for biodiesel production via transesterification of virgin cottonseed oil," Renewable Energy, Elsevier, vol. 133(C), pages 606-619.
    13. Shu, Qing & Zou, Wenqiang & He, Jiangfan & Lesmana, Herry & Zhang, Caixia & Zou, Laixi & Wang, Yao, 2019. "Preparation of the F−-SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol," Renewable Energy, Elsevier, vol. 135(C), pages 836-845.
    14. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    15. Ullah, Zahoor & Bustam, Mohamad Azmi & Man, Zakaria, 2015. "Biodiesel production from waste cooking oil by acidic ionic liquid as a catalyst," Renewable Energy, Elsevier, vol. 77(C), pages 521-526.
    16. Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.
    17. Karmakar, Bisheswar & Pal, Sucharita & Gopikrishna, Konga & Tiwari, Onkar Nath & Halder, Gopinath, 2022. "Injection of superheated C1 and C3 alcohols in non-edible Pongamia pinnata oil for semi-continuous uncatalyzed biodiesel synthesis," Renewable Energy, Elsevier, vol. 185(C), pages 850-861.
    18. Azeem, Muhammad Waqar & Hanif, Muhammad Asif & Al-Sabahi, Jamal Nasar & Khan, Asif Ali & Naz, Saima & Ijaz, Aliya, 2016. "Production of biodiesel from low priced, renewable and abundant date seed oil," Renewable Energy, Elsevier, vol. 86(C), pages 124-132.
    19. Rochelle, David & Najafi, Hamidreza, 2019. "A review of the effect of biodiesel on gas turbine emissions and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 129-137.
    20. Zhang, Qiankun & Xia, Jin & Wang, Jianping & He, Zhuoyao & Zhao, Wenbin & Qian, Yong & Zheng, Liang & Liu, Rui & Lu, Xingcai, 2022. "Experimental study on ignition and combustion characteristics of biodiesel-butanol blends at different injection pressures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:222:y:2024:i:c:s0960148123018402. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.