IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp725-734.html
   My bibliography  Save this article

Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine

Author

Listed:
  • Oni, Babalola Aisosa
  • Oluwatosin, David

Abstract

Emission characteristics and performance of Neem seed and Camelina Sativa based biodiesel in diesel engine was studied. The engine test was carried out using diesel fuels (B0), 5% and 10% (volume) blends of Neem and Camelina Sativa oil methyl esters of NB5, NB10, CB5 and CB10. The Engine performance of these fuels was tested in a 1.9 Multijet diesel Engine. The blends met the EN 14214 and ASTM D6751 standards. Performance test of the Engine shows that CB10 biodiesel fuels produced better BP and averagely high BSFC compare to the diesel fuels all through the ranges of Engine speeds examined. The Emission test results also shows that NB5, CB5, NB10 and CB10 fuels reduced the average emissions of CO by 4.84%, 8.79%, 10.77% and 12.09%, for HC and CO2 their emission were 6.48%, 12.96%, 16.67%, 20.37%; and 2.64%, 4.55%, 5.72%, 6.74% compared to diesel fuels. NOx emission of the blends has higher emission values of 18.7%, 3.14%, 19.33%, and 19.78%, for NB5, CB5, NB10, and CB10 fuels compared to conventional fuels. CB10 produces lower emissions than other biodiesel fuels, thus reducing major pollution and ensuring environmental safety. CB10 can be used as a replacement for diesel fuels in unmodified engines.

Suggested Citation

  • Oni, Babalola Aisosa & Oluwatosin, David, 2020. "Emission characteristics and performance of neem seed (Azadirachta indica) and Camelina (Camelina sativa) based biodiesel in diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 725-734.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:725-734
    DOI: 10.1016/j.renene.2019.12.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119318828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.12.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ramadhas, A.S. & Muraleedharan, C. & Jayaraj, S., 2005. "Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil," Renewable Energy, Elsevier, vol. 30(12), pages 1789-1800.
    2. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    3. Ali, Obed M. & Mamat, Rizalman & Abdullah, Nik R. & Abdullah, Abdul Adam, 2016. "Analysis of blended fuel properties and engine performance with palm biodiesel–diesel blended fuel," Renewable Energy, Elsevier, vol. 86(C), pages 59-67.
    4. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    5. Janaun, Jidon & Ellis, Naoko, 2010. "Perspectives on biodiesel as a sustainable fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(4), pages 1312-1320, May.
    6. Leung, Dennis Y.C. & Wu, Xuan & Leung, M.K.H., 2010. "A review on biodiesel production using catalyzed transesterification," Applied Energy, Elsevier, vol. 87(4), pages 1083-1095, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Ajeet & Vachan Tirkey, Jeevan & Kumar Shukla, Shailendra, 2021. "“Comparative energy and economic analysis of different vegetable oil plants for biodiesel production in India”," Renewable Energy, Elsevier, vol. 169(C), pages 266-282.
    2. Ornella Chiavola & Fulvio Palmieri & Domenico Mario Cavallo, 2023. "On the Increase in the Renewable Fraction in Diesel Blends using Aviation Fuel in a Common Rail Engine," Energies, MDPI, vol. 16(12), pages 1-16, June.
    3. Singh, Deepak Kumar & Tirkey, Jeewan Vachan, 2022. "Performance optimization through response surface methodology of an integrated coal gasification and CI engine fuelled with diesel and low-grade coal-based producer gas," Energy, Elsevier, vol. 238(PC).
    4. Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
    5. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    6. Bukkarapu, Kiran Raj & Krishnasamy, Anand, 2022. "A critical review on available models to predict engine fuel properties of biodiesel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Viswanathan, Vinoth Kannan & Kaladgi, Abdul Razak & Thomai, Pushparaj & Ağbulut, Ümit & Alwetaishi, Mamdooh & Said, Zafar & Shaik, Saboor & Afzal, Asif, 2022. "Hybrid optimization and modelling of CI engine performance and emission characteristics of novel hybrid biodiesel blends," Renewable Energy, Elsevier, vol. 198(C), pages 549-567.
    8. Khoobbakht, Golmohammad & Kheiralipour, Kamran & Yuan, Wenqiao & Seifi, Mohammad Reza & Karimi, Mahmoud, 2020. "Desirability function approach for optimization of enzymatic transesterification catalyzed by lipase immobilized on mesoporous magnetic nanoparticles," Renewable Energy, Elsevier, vol. 158(C), pages 253-262.
    9. Siddharth Jain, 2023. "An Assessment of the Operation and Emission Characteristics of a Diesel Engine Powered by a New Biofuel Prepared Using In Situ Transesterification of a Dry Spirogyra Algae–Jatropha Powder Mixture," Energies, MDPI, vol. 16(3), pages 1-16, February.
    10. Hájek, Martin & Kocián, David & Hájek, Tomáš & Lukeš, Vladimír & Klein, Erik, 2024. "Epoxidation of Camelina sativa oil methyl esters as a second-generation biofuel with thermodynamic calculations," Renewable Energy, Elsevier, vol. 228(C).
    11. Oni, Babalola Aisosa & Sanni, Samuel Eshorame & Ibegbu, Anayo Jerome & Tomomewo, Olusegun Stanley, 2023. "Evaluation of engine characteristics of a micro-gas turbine powered with JETA1 fuel mixed with Afzelia biodiesel and dimethyl ether (DME)," Renewable Energy, Elsevier, vol. 216(C).
    12. Adhirath Mandal & Dowan Cha & HaengMuk Cho, 2023. "Impact of Waste Fry Biofuel on Diesel Engine Performance and Emissions," Energies, MDPI, vol. 16(9), pages 1-23, April.
    13. Paneerselvam, Purushothaman & Panithasan, Mebin Samuel & Venkadesan, Gnanamoorthi, 2024. "RSM optimization of ultrasound-assisted melia dubia oil extraction with green solvents and their suitability for diesel engine applications," Renewable Energy, Elsevier, vol. 222(C).
    14. Bai, Yuanqi & Wang, Ying & Wang, Xiaochen, 2021. "Development of a skeletal mechanism for four-component biodiesel surrogate fuel with PAH," Renewable Energy, Elsevier, vol. 171(C), pages 266-274.
    15. Jacob, Ashwin & Ashok, B. & Usman, Kaisan Muhammad & Kulla, D.M., 2022. "Influence of post-injection parameters on the performance of continuous regeneration trap to mitigate greenhouse gas and particulate emissions from CI engine," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Mofijur, M. & Bhuiya, M.M.K., 2016. "Prospects, feedstocks and challenges of biodiesel production from beauty leaf oil and castor oil: A nonedible oil sources in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 302-318.
    2. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel—Part: 1 selection of feedstocks, oil extraction techniques and conversion technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1109-1128.
    3. Takase, Mohammed & Zhao, Ting & Zhang, Min & Chen, Yao & Liu, Hongyang & Yang, Liuqing & Wu, Xiangyang, 2015. "An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 495-520.
    4. No, Soo-Young, 2011. "Inedible vegetable oils and their derivatives for alternative diesel fuels in CI engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 131-149, January.
    5. Bhuiya, M.M.K. & Rasul, M.G. & Khan, M.M.K. & Ashwath, N. & Azad, A.K. & Hazrat, M.A., 2016. "Prospects of 2nd generation biodiesel as a sustainable fuel – Part 2: Properties, performance and emission characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1129-1146.
    6. Ahmad, A.L. & Yasin, N.H. Mat & Derek, C.J.C. & Lim, J.K., 2011. "Microalgae as a sustainable energy source for biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 584-593, January.
    7. Nitièma-Yefanova, Svitlana & Coniglio, Lucie & Schneider, Raphaël & Nébié, Roger H.C. & Bonzi-Coulibaly, Yvonne L., 2016. "Ethyl biodiesel production from non-edible oils of Balanites aegyptiaca, Azadirachta indica, and Jatropha curcas seeds – Laboratory scale development," Renewable Energy, Elsevier, vol. 96(PA), pages 881-890.
    8. Praveena, V. & Martin, Leenus Jesu & Matijošius, Jonas & Aloui, Fethi & Pugazhendhi, Arivalagan & Varuvel, Edwin Geo, 2024. "A systematic review on biofuel production and utilization from algae and waste feedstocks– a circular economy approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Atadashi, I.M. & Aroua, M.K. & Abdul Aziz, A.R. & Sulaiman, N.M.N., 2012. "Production of biodiesel using high free fatty acid feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3275-3285.
    10. Banković-Ilić, Ivana B. & Stojković, Ivan J. & Stamenković, Olivera S. & Veljkovic, Vlada B. & Hung, Yung-Tse, 2014. "Waste animal fats as feedstocks for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 238-254.
    11. Azad, A.K. & Rasul, M.G. & Khan, M.M.K. & Sharma, Subhash C. & Hazrat, M.A., 2015. "Prospect of biofuels as an alternative transport fuel in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 331-351.
    12. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    13. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    14. Chattopadhyay, Soham & Sen, Ramkrishna, 2013. "Fuel properties, engine performance and environmental benefits of biodiesel produced by a green process," Applied Energy, Elsevier, vol. 105(C), pages 319-326.
    15. Banković-Ilić, Ivana B. & Stamenković, Olivera S. & Veljković, Vlada B., 2012. "Biodiesel production from non-edible plant oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3621-3647.
    16. Mardhiah, H. Haziratul & Ong, Hwai Chyuan & Masjuki, H.H. & Lim, Steven & Lee, H.V., 2017. "A review on latest developments and future prospects of heterogeneous catalyst in biodiesel production from non-edible oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1225-1236.
    17. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    18. Mat Yasin, Mohd Hafizil & Mamat, Rizalman & Najafi, G. & Ali, Obed Majeed & Yusop, Ahmad Fitri & Ali, Mohd Hafiz, 2017. "Potentials of palm oil as new feedstock oil for a global alternative fuel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1034-1049.
    19. Mohammed I. Jahirul & Richard J. Brown & Wijitha Senadeera & Ian M. O'Hara & Zoran D. Ristovski, 2013. "The Use of Artificial Neural Networks for Identifying Sustainable Biodiesel Feedstocks," Energies, MDPI, vol. 6(8), pages 1-43, July.
    20. Baskar, G. & Aiswarya, R., 2016. "Trends in catalytic production of biodiesel from various feedstocks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 496-504.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:725-734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.