IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5705-d632972.html
   My bibliography  Save this article

Organic Rankine Cycle-Ground Source Heat Pump with Seasonal Energy Storage Based Micro-Cogeneration System in Cold Climates: The Case for Canada

Author

Listed:
  • Wahiba Yaïci

    (CanmetENERGY Research Centre, Natural Resources Canada, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada)

  • Andres Annuk

    (Chair of Energy Application Engineering, Institute of Technology, Estonian University of Life Sciences, 51006 Tartu, Estonia)

  • Evgueniy Entchev

    (CanmetENERGY Research Centre, Natural Resources Canada, 1 Haanel Drive, Ottawa, ON K1A 1M1, Canada)

  • Michela Longo

    (Department of Energy, Politecnico di Milano, via La Masa, 34–20156 Milan, Italy)

  • Janar Kalder

    (Chair of Energy Application Engineering, Institute of Technology, Estonian University of Life Sciences, 51006 Tartu, Estonia)

Abstract

In cold climatic regions such as those located across Canada, it is necessary to implement heating system technology that is ultra-efficient and that has near-zero rates of emissions. Such systems would satisfy consumers’ energy needs and also comply with environmental standards, especially because the systems would account for more than 80% of residential energy use. This paper investigates two complementary efficient systems that can support these heating systems; ground-source heat pumps (GSHPs) and organic Rankine cycle systems (ORCs). The study proposes to couple these two systems in a parallel configuration. A dynamic simulation model created in TRNSYS platform has been deployed to assess the performance of the combined ORC-GSHP based micro-cogeneration system. This former provides heating to a residential house during the heating mode as needed. It has the capacity to switch to a charging mode, during which the ORC system is directly coupled to the ground heat exchanger (GHE), which works as a thermal energy storage and supplies energy to the GSHP. The feasibility of this combined system arrangement, and its comparison with a conventional GSHP system are examined for use in residential buildings in three cities across the varied climatic regions within Canada, namely Edmonton (AB), Halifax (NS), and Vancouver (BC). Results showed that the proposed micro-cogeneration system recorded less energy use of over 80%. The addition of the ORC system had a definite effect on the performance of the GSHP in that it decreased the operating hours from 11–58% compared to the conventional GSHP case and maintained consistently higher COP values. These results may help to specify viable ORC-GSHP based micro-co/trigeneration systems in cold climatic applications and should be useful for prototype design and development.

Suggested Citation

  • Wahiba Yaïci & Andres Annuk & Evgueniy Entchev & Michela Longo & Janar Kalder, 2021. "Organic Rankine Cycle-Ground Source Heat Pump with Seasonal Energy Storage Based Micro-Cogeneration System in Cold Climates: The Case for Canada," Energies, MDPI, vol. 14(18), pages 1-21, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5705-:d:632972
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xinru & Xia, Liang & Bales, Chris & Zhang, Xingxing & Copertaro, Benedetta & Pan, Song & Wu, Jinshun, 2020. "A systematic review of recent air source heat pump (ASHP) systems assisted by solar thermal, photovoltaic and photovoltaic/thermal sources," Renewable Energy, Elsevier, vol. 146(C), pages 2472-2487.
    2. Lorenzo Tocci & Tamas Pal & Ioannis Pesmazoglou & Benjamin Franchetti, 2017. "Small Scale Organic Rankine Cycle (ORC): A Techno-Economic Review," Energies, MDPI, vol. 10(4), pages 1-26, March.
    3. Pereira, João S. & Ribeiro, José B. & Mendes, Ricardo & Vaz, Gilberto C. & André, Jorge C., 2018. "ORC based micro-cogeneration systems for residential application – A state of the art review and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 728-743.
    4. Fischer, David & Madani, Hatef, 2017. "On heat pumps in smart grids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 342-357.
    5. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2013. "Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids," Energy, Elsevier, vol. 63(C), pages 123-132.
    6. Fong, Matthew & Alzoubi, Mahmoud A. & Kurnia, Jundika C. & Sasmito, Agus P., 2019. "On the performance of ground coupled seasonal thermal energy storage for heating and cooling: A Canadian context," Applied Energy, Elsevier, vol. 250(C), pages 593-604.
    7. Pinheiro, Joana M. & Salústio, Sérgio & Rocha, João & Valente, Anabela A. & Silva, Carlos M., 2020. "Adsorption heat pumps for heating applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    8. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    9. You, Tian & Wu, Wei & Shi, Wenxing & Wang, Baolong & Li, Xianting, 2016. "An overview of the problems and solutions of soil thermal imbalance of ground-coupled heat pumps in cold regions," Applied Energy, Elsevier, vol. 177(C), pages 515-536.
    10. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    11. Zhai, Huixing & Shi, Lin & An, Qingsong, 2014. "Influence of working fluid properties on system performance and screen evaluation indicators for geothermal ORC (organic Rankine cycle) system," Energy, Elsevier, vol. 74(C), pages 2-11.
    12. Wang, E.H. & Zhang, H.G. & Fan, B.Y. & Ouyang, M.G. & Zhao, Y. & Mu, Q.H., 2011. "Study of working fluid selection of organic Rankine cycle (ORC) for engine waste heat recovery," Energy, Elsevier, vol. 36(5), pages 3406-3418.
    13. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    14. Rayegan, R. & Tao, Y.X., 2011. "A procedure to select working fluids for Solar Organic Rankine Cycles (ORCs)," Renewable Energy, Elsevier, vol. 36(2), pages 659-670.
    15. Wu, Wei & Wang, Baolong & You, Tian & Shi, Wenxing & Li, Xianting, 2013. "A potential solution for thermal imbalance of ground source heat pump systems in cold regions: Ground source absorption heat pump," Renewable Energy, Elsevier, vol. 59(C), pages 39-48.
    16. Qiu, Guoquan, 2012. "Selection of working fluids for micro-CHP systems with ORC," Renewable Energy, Elsevier, vol. 48(C), pages 565-570.
    17. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    18. Ma, Zhenjun & Xia, Lei & Gong, Xuemei & Kokogiannakis, Georgios & Wang, Shugang & Zhou, Xinlei, 2020. "Recent advances and development in optimal design and control of ground source heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    19. Chen, Huijuan & Goswami, D. Yogi & Stefanakos, Elias K., 2010. "A review of thermodynamic cycles and working fluids for the conversion of low-grade heat," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 3059-3067, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bao, Junjiang & Zhao, Li, 2013. "A review of working fluid and expander selections for organic Rankine cycle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 325-342.
    2. Zhai, Huixing & An, Qingsong & Shi, Lin & Lemort, Vincent & Quoilin, Sylvain, 2016. "Categorization and analysis of heat sources for organic Rankine cycle systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 790-805.
    3. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    4. Cavazzini, G. & Bari, S. & Pavesi, G. & Ardizzon, G., 2017. "A multi-fluid PSO-based algorithm for the search of the best performance of sub-critical Organic Rankine Cycles," Energy, Elsevier, vol. 129(C), pages 42-58.
    5. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    6. Ge, Zhong & Wang, Hua & Wang, Hui-Tao & Wang, Jian-Jun & Li, Ming & Wu, Fu-Zhong & Zhang, Song-Yuan, 2015. "Main parameters optimization of regenerative organic Rankine cycle driven by low-temperature flue gas waste heat," Energy, Elsevier, vol. 93(P2), pages 1886-1895.
    7. Braimakis, Konstantinos & Karellas, Sotirios, 2017. "Integrated thermoeconomic optimization of standard and regenerative ORC for different heat source types and capacities," Energy, Elsevier, vol. 121(C), pages 570-598.
    8. Lee, Ung & Jeon, Jeongwoo & Han, Chonghun & Lim, Youngsub, 2017. "Superstructure based techno-economic optimization of the organic rankine cycle using LNG cryogenic energy," Energy, Elsevier, vol. 137(C), pages 83-94.
    9. Ibarra, Mercedes & Rovira, Antonio & Alarcón-Padilla, Diego-César & Blanco, Julián, 2014. "Performance of a 5kWe Organic Rankine Cycle at part-load operation," Applied Energy, Elsevier, vol. 120(C), pages 147-158.
    10. Emily Spayde & Pedro J. Mago & Heejin Cho, 2017. "Performance Evaluation of a Solar-Powered Regenerative Organic Rankine Cycle in Different Climate Conditions," Energies, MDPI, vol. 10(1), pages 1-20, January.
    11. Xu, Weicong & Zhao, Li & Mao, Samuel S. & Deng, Shuai, 2020. "Towards novel low temperature thermodynamic cycle: A critical review originated from organic Rankine cycle," Applied Energy, Elsevier, vol. 270(C).
    12. Hou, Xiaochen & Zhang, Hongguang & Yu, Fei & Liu, Hongda & Yang, Fubin & Xu, Yonghong & Tian, Yaming & Li, Gaosheng, 2017. "Free piston expander-linear generator used for organic Rankine cycle waste heat recovery system," Applied Energy, Elsevier, vol. 208(C), pages 1297-1307.
    13. Xu, Jinliang & Yu, Chao, 2014. "Critical temperature criterion for selection of working fluids for subcritical pressure Organic Rankine cycles," Energy, Elsevier, vol. 74(C), pages 719-733.
    14. Lei, Biao & Wu, Yu-Ting & Wang, Wei & Wang, Jing-Fu & Ma, Chong-Fang, 2014. "A study on lubricant oil supply for positive-displacement expanders in small-scale organic Rankine cycles," Energy, Elsevier, vol. 78(C), pages 846-853.
    15. Amiri Rad, Ehsan & Mohammadi, Saeed & Tayyeban, Edris, 2020. "Simultaneous optimization of working fluid and boiler pressure in an organic Rankine cycle for different heat source temperatures," Energy, Elsevier, vol. 194(C).
    16. Glover, Stephen & Douglas, Roy & De Rosa, Mattia & Zhang, Xiaolei & Glover, Laura, 2015. "Simulation of a multiple heat source supercritical ORC (Organic Rankine Cycle) for vehicle waste heat recovery," Energy, Elsevier, vol. 93(P2), pages 1568-1580.
    17. Varma, G.V. Pradeep & Srinivas, T., 2017. "Power generation from low temperature heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 402-414.
    18. Sarkar, Jahar & Bhattacharyya, Souvik, 2015. "Potential of organic Rankine cycle technology in India: Working fluid selection and feasibility study," Energy, Elsevier, vol. 90(P2), pages 1618-1625.
    19. Feng, Yongqiang & Zhang, Yaning & Li, Bingxi & Yang, Jinfu & Shi, Yang, 2015. "Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery," Energy, Elsevier, vol. 82(C), pages 664-677.
    20. Li, Min & Zhao, Bingxiong, 2016. "Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis," Energy, Elsevier, vol. 106(C), pages 121-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5705-:d:632972. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.