IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012673.html
   My bibliography  Save this article

Generalization of oscillation loop and energy flow analysis for investigating various oscillations of renewable energy systems

Author

Listed:
  • Hu, Yong
  • Bu, Siqi
  • Luo, Jianqiang
  • Wen, Jiaxin

Abstract

The renewable energy system can stimulate more dynamics and increase the possibility of the oscillatory instability. The dynamic model becomes significantly complicated due to the large numbers of grid-connected renewable energy systems and time-varying features of their control parameters. Therefore, it is critical to investigate the various oscillations of renewable energy systems preferably without the high-dimensional dynamic modeling. The existing monitoring-based methods cannot provide the mechanism analysis of emerging oscillations or quantitative analysis of the damping feature of oscillations of renewable energy systems. In this paper, firstly, the generalized oscillation loop is designed based on the second-order differential operations of a concerned control loop of a renewable energy system to analyze the mechanism of the emerging oscillation associated with this control loop. On this basis, a generalized energy flow analysis is proposed for the quantitative analysis of the damping feature of oscillations in this control loop. Then, taking the grid-side control loops of the full converter-based wind generation system as an example, the key physical quantities of emerging oscillations are further derived and the damping feature assessment of concerned oscillations is conducted. Finally, the developed methodology is verified to investigate the various oscillations of the full converter-based wind generation system in the case studies. The results demonstrate that the eigenvalues of concerned oscillations can be accurately estimated through the generalized energy flow analysis without the whole grid modeling; additionally, the oscillatory stability of a RES can be enhanced by improving the damping performance of emerging oscillations with the help of the mechanism analysis, which lays a foundation for setting converter control parameters and configuring additional damping devices.

Suggested Citation

  • Hu, Yong & Bu, Siqi & Luo, Jianqiang & Wen, Jiaxin, 2023. "Generalization of oscillation loop and energy flow analysis for investigating various oscillations of renewable energy systems," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012673
    DOI: 10.1016/j.renene.2023.119352
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012673
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119352?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zong, Haoxiang & Lyu, Jing & Wang, Xiao & Zhang, Chen & Zhang, Ruifang & Cai, Xu, 2021. "Grey box aggregation modeling of wind farm for wideband oscillations analysis," Applied Energy, Elsevier, vol. 283(C).
    2. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Mousa, Hossam H.H. & Youssef, Abdel-Raheem & Mohamed, Essam E.M., 2020. "Hybrid and adaptive sectors P&O MPPT algorithm based wind generation system," Renewable Energy, Elsevier, vol. 145(C), pages 1412-1429.
    4. Wang, Qin & Yao, Wei & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu & Yang, Xiaobo & Xie, Hailian & Huang, Xing, 2020. "Dynamic modeling and small signal stability analysis of distributed photovoltaic grid-connected system with large scale of panel level DC optimizers," Applied Energy, Elsevier, vol. 259(C).
    5. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
    6. Tripathi, S.M. & Tiwari, A.N. & Singh, Deependra, 2015. "Grid-integrated permanent magnet synchronous generator based wind energy conversion systems: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1288-1305.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Lei & Xie, Xiaorong & Li, Xiang & Yang, Lei & Cao, Xin, 2023. "Online SSO stability analysis-based oscillation parameter estimation in converter-tied grids," Applied Energy, Elsevier, vol. 351(C).
    2. Youssef, Abdel-Raheem & Mousa, Hossam H.H. & Mohamed, Essam E.M., 2020. "Development of self-adaptive P&O MPPT algorithm for wind generation systems with concentrated search area," Renewable Energy, Elsevier, vol. 154(C), pages 875-893.
    3. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    4. Qingshan Gong & Yurong Xiong & Zhigang Jiang & Xugang Zhang & Mingmao Hu & Zhanlong Cao, 2022. "Economic, Environmental and Social Benefits Analysis of Remanufacturing Strategies for Used Products," Mathematics, MDPI, vol. 10(21), pages 1-20, October.
    5. Min Wang & Xiaobin Dong & Youchun Zhai, 2021. "Optimal Configuration of the Integrated Charging Station for PV and Hydrogen Storage," Energies, MDPI, vol. 14(21), pages 1-12, October.
    6. Tavakol Aghaei, Vahid & Ağababaoğlu, Arda & Bawo, Biram & Naseradinmousavi, Peiman & Yıldırım, Sinan & Yeşilyurt, Serhat & Onat, Ahmet, 2023. "Energy optimization of wind turbines via a neural control policy based on reinforcement learning Markov chain Monte Carlo algorithm," Applied Energy, Elsevier, vol. 341(C).
    7. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    8. Sun, Haiying & Qiu, Changyu & Lu, Lin & Gao, Xiaoxia & Chen, Jian & Yang, Hongxing, 2020. "Wind turbine power modelling and optimization using artificial neural network with wind field experimental data," Applied Energy, Elsevier, vol. 280(C).
    9. Narayana, Mahinsasa & Sunderland, Keith M. & Putrus, Ghanim & Conlon, Michael F., 2017. "Adaptive linear prediction for optimal control of wind turbines," Renewable Energy, Elsevier, vol. 113(C), pages 895-906.
    10. Yang, Zhimin & Chai, Yi, 2016. "A survey of fault diagnosis for onshore grid-connected converter in wind energy conversion systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 345-359.
    11. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    12. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Ekanayake, J.B. & Tiong, S.K., 2021. "Variable speed pumped hydro storage: A review of converters, controls and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Barra, P.H.A. & de Carvalho, W.C. & Menezes, T.S. & Fernandes, R.A.S. & Coury, D.V., 2021. "A review on wind power smoothing using high-power energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    14. Yang, Bo & Zeng, Chunyuan & Li, Danyang & Guo, Zhengxun & Chen, Yijun & Shu, Hongchun & Cao, Pulin & Li, Zilin, 2022. "Improved immune genetic algorithm based TEG system reconfiguration under non-uniform temperature distribution," Applied Energy, Elsevier, vol. 325(C).
    15. Huibing Cheng & Shanshui Zheng, 2022. "Incentive Compensation Mechanism for the Infrastructure Construction of Electric Vehicle Battery Swapping Station under Asymmetric Information," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    16. Yang, Bo & Guo, Zhengxun & Yang, Yi & Chen, Yijun & Zhang, Rui & Su, Keyi & Shu, Hongchun & Yu, Tao & Zhang, Xiaoshun, 2021. "Extreme learning machine based meta-heuristic algorithms for parameter extraction of solid oxide fuel cells," Applied Energy, Elsevier, vol. 303(C).
    17. Yang, Bo & Wang, Junting & Zhang, Xiaoshun & Yu, Lei & Shu, Hongchun & Yu, Tao & Sun, Liming, 2020. "Control of SMES systems in distribution networks with renewable energy integration: A perturbation estimation approach," Energy, Elsevier, vol. 202(C).
    18. Sohrab Mirsaeidi & Subash Devkota & Xiaojun Wang & Dimitrios Tzelepis & Ghulam Abbas & Ahmed Alshahir & Jinghan He, 2022. "A Review on Optimization Objectives for Power System Operation Improvement Using FACTS Devices," Energies, MDPI, vol. 16(1), pages 1-24, December.
    19. Jahangir Hossain & Aida. F. A. Kadir & Ainain. N. Hanafi & Hussain Shareef & Tamer Khatib & Kyairul. A. Baharin & Mohamad. F. Sulaima, 2023. "A Review on Optimal Energy Management in Commercial Buildings," Energies, MDPI, vol. 16(4), pages 1-40, February.
    20. Arellano-Sánchez, Maria C. & Reyes-Reyes, Juan & Ponce-Silva, Mario & Olivares-Peregrino, Víctor & Astorga-Zaragoza, Carlos, 2020. "Static technologies associated with pedaling energy harvesting through rotary transducers, a review," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012673. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.