IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v218y2023ics0960148123012053.html
   My bibliography  Save this article

Comprehensive techno-economic assessment and tri-objective optimization of an innovative integration of compressed air energy storage system and solid oxide fuel cell

Author

Listed:
  • Alirahmi, Seyed Meysam
  • Raisi, Afrasiab
  • Ghasemi, Behzad
  • Nadooshan, Afshin Ahmadi

Abstract

The growing integration of renewable energy into the power system causes the electricity profile to differ from the power demand. This results in a deficit of electricity at peak hours and excess electricity during off-peak hours. Accordingly, the purpose of this research is to investigate the concept of peak shaving storing energy at a cheap cost in off-peak hours and using it at a high cost for peak hours. The present study proposes a novel storage configuration for electricity generation by combining a solid oxide fuel cell (SOFC), compressed air energy storage (CAES), and a water desalination unit. The objective is to deal with power failures and interruptions in power grids that have a high level of renewable resource penetration while reducing the emissions produced by CAES systems. The suggested system also combines a gas turbine and a fuel cell to create electrical energy during discharge, increasing efficiency and lowering pollutants. An economic, environmental, and thermodynamic analysis of the proposed system's performance is conducted. The suggested system is then optimized using the gray wolf algorithm to determine the optimal way to balance thermodynamic performance with economic and environmental factors. Lastly, it is determined that at the TOPSIS point, this system's exergy round trip efficiency is 71.03%, its total cost is 34.07 $/h, and its pollution rate is 0.184 kg/kWh.

Suggested Citation

  • Alirahmi, Seyed Meysam & Raisi, Afrasiab & Ghasemi, Behzad & Nadooshan, Afshin Ahmadi, 2023. "Comprehensive techno-economic assessment and tri-objective optimization of an innovative integration of compressed air energy storage system and solid oxide fuel cell," Renewable Energy, Elsevier, vol. 218(C).
  • Handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012053
    DOI: 10.1016/j.renene.2023.119290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123012053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alirahmi, Seyed Mojtaba & Behzadi, Amirmohammad & Ahmadi, Pouria & Sadrizadeh, Sasan, 2023. "An innovative four-objective dragonfly-inspired optimization algorithm for an efficient, green, and cost-effective waste heat recovery from SOFC," Energy, Elsevier, vol. 263(PA).
    2. Behar, Omar & Khellaf, Abdallah & Mohammedi, Kamal, 2013. "A review of studies on central receiver solar thermal power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 12-39.
    3. Alirahmi, Seyed Mojtaba & Ebrahimi-Moghadam, Amir, 2022. "Comparative study, working fluid selection, and optimal design of three systems for electricity and freshwater based on solid oxide fuel cell mover cycle," Applied Energy, Elsevier, vol. 323(C).
    4. Behzadi, Amirmohammad & Arabkoohsar, Ahmad & Gholamian, Ehsan, 2020. "Multi-criteria optimization of a biomass-fired proton exchange membrane fuel cell integrated with organic rankine cycle/thermoelectric generator using different gasification agents," Energy, Elsevier, vol. 201(C).
    5. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    6. Emadi, Mohammad Ali & Chitgar, Nazanin & Oyewunmi, Oyeniyi A. & Markides, Christos N., 2020. "Working-fluid selection and thermoeconomic optimisation of a combined cycle cogeneration dual-loop organic Rankine cycle (ORC) system for solid oxide fuel cell (SOFC) waste-heat recovery," Applied Energy, Elsevier, vol. 261(C).
    7. Reyhani, Hamed Akbarpour & Meratizaman, Mousa & Ebrahimi, Armin & Pourali, Omid & Amidpour, Majid, 2016. "Thermodynamic and economic optimization of SOFC-GT and its cogeneration opportunities using generated syngas from heavy fuel oil gasification," Energy, Elsevier, vol. 107(C), pages 141-164.
    8. Yan, Yi & Zhang, Chenghui & Li, Ke & Wang, Zhen, 2018. "An integrated design for hybrid combined cooling, heating and power system with compressed air energy storage," Applied Energy, Elsevier, vol. 210(C), pages 1151-1166.
    9. Alirahmi, Seyed Mojtaba & Mousavi, Seyedeh Fateme & Ahmadi, Pouria & Arabkoohsar, Ahmad, 2021. "Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization," Energy, Elsevier, vol. 236(C).
    10. Coppitters, Diederik & Contino, Francesco & El-Baz, Ahmed & Breuhaus, Peter & De Paepe, Ward, 2020. "Techno-economic feasibility study of a solar-powered distributed cogeneration system producing power and distillate water: Sensitivity and exergy analysis," Renewable Energy, Elsevier, vol. 150(C), pages 1089-1097.
    11. Szablowski, Lukasz & Krawczyk, Piotr & Badyda, Krzysztof & Karellas, Sotirios & Kakaras, Emmanuel & Bujalski, Wojciech, 2017. "Energy and exergy analysis of adiabatic compressed air energy storage system," Energy, Elsevier, vol. 138(C), pages 12-18.
    12. Alirahmi, Seyed Mojtaba & Razmi, Amir Reza & Arabkoohsar, Ahmad, 2021. "Comprehensive assessment and multi-objective optimization of a green concept based on a combination of hydrogen and compressed air energy storage (CAES) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Razmi, Amir Reza & Hanifi, Amir Reza & Shahbakhti, Mahdi, 2023. "Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field," Renewable Energy, Elsevier, vol. 215(C).
    2. Alirahmi, Seyed Mojtaba & Gundersen, Truls & Arabkoohsar, Ahmad & Klemeš, Jiří Jaromír & Sin, Gürkan & Yu, Haoshui, 2024. "Process design, integration, and optimization of a novel compressed air energy storage for the coproduction of electricity, cooling, and water," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    3. Alirahmi, Seyed Mojtaba & Mousavi, Seyedeh Fateme & Ahmadi, Pouria & Arabkoohsar, Ahmad, 2021. "Soft computing analysis of a compressed air energy storage and SOFC system via different artificial neural network architecture and tri-objective grey wolf optimization," Energy, Elsevier, vol. 236(C).
    4. Alirahmi, Seyed Mojtaba & Ebrahimi-Moghadam, Amir, 2022. "Comparative study, working fluid selection, and optimal design of three systems for electricity and freshwater based on solid oxide fuel cell mover cycle," Applied Energy, Elsevier, vol. 323(C).
    5. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    6. Ebrahimi-Moghadam, Amir & Farzaneh-Gord, Mahmood, 2022. "Optimal operation of a multi-generation district energy hub based on electrical, heating, and cooling demands and hydrogen production," Applied Energy, Elsevier, vol. 309(C).
    7. Su, Dawei, 2022. "Comprehensive thermodynamic and exergoeconomic analyses and multi-objective optimization of a compressed air energy storage hybridized with a parabolic trough solar collectors," Energy, Elsevier, vol. 244(PA).
    8. Wang, H.N. & Xue, X.J. & Zhao, C.Y., 2024. "Performance analysis on combined energy supply system based on Carnot battery with packed-bed thermal energy storage," Renewable Energy, Elsevier, vol. 228(C).
    9. Alirahmi, Seyed Mojtaba & Behzadi, Amirmohammad & Ahmadi, Pouria & Sadrizadeh, Sasan, 2023. "An innovative four-objective dragonfly-inspired optimization algorithm for an efficient, green, and cost-effective waste heat recovery from SOFC," Energy, Elsevier, vol. 263(PA).
    10. Dzido, Aleksandra & Krawczyk, Piotr & Wołowicz, Marcin & Badyda, Krzysztof, 2022. "Comparison of advanced air liquefaction systems in Liquid Air Energy Storage applications," Renewable Energy, Elsevier, vol. 184(C), pages 727-739.
    11. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Pan, Yachao & Zhang, Wujie & Wang, Yan, 2023. "Nonlinear modeling and multi-scale influence characteristics analysis of organic Rankine cycle (ORC) system considering variable driving cycles," Energy, Elsevier, vol. 265(C).
    12. Ping, Xu & Yang, Fubin & Zhang, Hongguang & Xing, Chengda & Zhang, Wujie & Wang, Yan, 2022. "Evaluation of hybrid forecasting methods for organic Rankine cycle: Unsupervised learning-based outlier removal and partial mutual information-based feature selection," Applied Energy, Elsevier, vol. 311(C).
    13. Bai, Hao & Luo, ShiHao & Zhao, Xijie & Zhao, Gen & Gao, Yang, 2022. "Comprehensive assessment of a green cogeneration system based on compressed air energy storage (CAES) and zeotropic mixtures," Energy, Elsevier, vol. 254(PA).
    14. Badur, Janusz & Lemański, Marcin & Kowalczyk, Tomasz & Ziółkowski, Paweł & Kornet, Sebastian, 2018. "Zero-dimensional robust model of an SOFC with internal reforming for hybrid energy cycles," Energy, Elsevier, vol. 158(C), pages 128-138.
    15. Razmi, Amir Reza & Arabkoohsar, Ahmad & Nami, Hossein, 2020. "Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system," Energy, Elsevier, vol. 210(C).
    16. Deng, Jiaolong & Guan, Chaoran & Sun, Yujie & Liu, Xiaojing & Zhang, Tengfei & He, Hui & Chai, Xiang, 2024. "Techno-economic analysis and dynamic performance evaluation of an integrated green concept based on concentrating solar power and a transportable heat pipe-cooled nuclear reactor," Energy, Elsevier, vol. 303(C).
    17. Li, Peng & Hu, Qingya & Han, Zhonghe & Wang, Changxin & Wang, Runxia & Han, Xu & Wang, Yongzhen, 2022. "Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media," Energy, Elsevier, vol. 239(PD).
    18. Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
    19. Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
    20. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:218:y:2023:i:c:s0960148123012053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.