IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v217y2023ics0960148123011606.html
   My bibliography  Save this article

Numerical analysis of the heat transfer and fluid flow of a novel water-based hybrid photovoltaic-thermal solar collector integrated with flax fibers as natural porous materials

Author

Listed:
  • Khelifa, Abdelkrim
  • Kabeel, A.E.
  • Attia, Mohammed El Hadi
  • Zayed, Mohamed E.
  • Abdelgaied, Mohamed

Abstract

Photovoltaic thermal (PVT) collector-based active cooling technology makes it possible to increase the efficiency of PV solar cells and meanwhile generate heat through the direct conversion of solar irradiation into electricity. Hence, this study presents a detailed numerical analysis of the thermal performance of PVT solar collectors integrated with flax fibers as natural porous materials. To achieve this goal, a cooling channel is proposed, which contains porous flax fiber materials doping in pure water as a cooling fluid for the photovoltaic panels. A particular focus of this research is emphasized on the effects of the thickness of the porous material layer (5−50 mm), the solar flux (50−1000 W/m2), and the flow rate of coolant (0.40−1.0 m/s), to determine the best thickness of the porous material and the cooling fluid flowrate that achieves the highest performance of photovoltaic panels. The simulations are performed using ANSYS software, Navier Stokes equations, and Darcy-Brinkman-Forchheimer porous model. Moreover, the thermal performance of the proposed PVT system cooled with water/porous flax fibers mixture is analyzed and compared with the PVT collector using pure water and air as a coolant. The results presented that the optimal design for maximization of the cooling of photovoltaic panels is attained by incorporating porous flax fibers materials with a thickness of 50 mm and 0.907 m/s cooling water flowrate. It is indicated that the Nusselt number is increased from 18.65 to 51.0, with an improvement of 173.46% as compared to the use of only pure water at the optimal conditions. Moreover, the thermal efficiencies of the PVT system are obtained as 69.58%, 50.02%, and 34.60% using water with a flax fibers layer, pure water, and air, respectively.

Suggested Citation

  • Khelifa, Abdelkrim & Kabeel, A.E. & Attia, Mohammed El Hadi & Zayed, Mohamed E. & Abdelgaied, Mohamed, 2023. "Numerical analysis of the heat transfer and fluid flow of a novel water-based hybrid photovoltaic-thermal solar collector integrated with flax fibers as natural porous materials," Renewable Energy, Elsevier, vol. 217(C).
  • Handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011606
    DOI: 10.1016/j.renene.2023.119245
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123011606
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119245?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmed, Omer Khalil & Mohammed, Zala Aziz, 2017. "Influence of porous media on the performance of hybrid PV/Thermal collector," Renewable Energy, Elsevier, vol. 112(C), pages 378-387.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    2. Abed, Azhar Ahmed & Ahmed, Omer Khalil & Weis, Musa Mustafa & Hamada, Khalaf Ibrahim, 2020. "Performance augmentation of a PV/Trombe wall using Al2O3/Water nano-fluid: An experimental investigation," Renewable Energy, Elsevier, vol. 157(C), pages 515-529.
    3. Hachicha, Ahmed Amine & Abo-Zahhad, Essam M. & Said, Zafar & Rahman, S.M.A., 2022. "Numerical and experimental investigations of the electrical and thermal performances of a novel PV thermal system," Renewable Energy, Elsevier, vol. 195(C), pages 990-1000.
    4. Das, Dudul & Kalita, Pankaj & Roy, Omkar, 2018. "Flat plate hybrid photovoltaic- thermal (PV/T) system: A review on design and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 111-130.
    5. Gürbüz, Emine Yağız & Şahinkesen, İstemihan & Tuncer, Azim Doğuş & Keçebaş, Ali, 2023. "Design and experimental analysis of a parallel-flow photovoltaic-thermal air collector with finned latent heat thermal energy storage unit," Renewable Energy, Elsevier, vol. 217(C).
    6. Ahmed, Omer K. & Hamada, Khalaf I. & Salih, Abdulrazzaq M., 2019. "Enhancement of the performance of Photovoltaic/Trombe wall system using the porous medium: Experimental and theoretical study," Energy, Elsevier, vol. 171(C), pages 14-26.
    7. Pang, Wei & Zhang, Yongzhe & Duck, Benjamin C. & Yu, Hongwen & Song, Xuemei & Yan, Hui, 2020. "Cross sectional geometries effect on the energy efficiency of a photovoltaic thermal module: Numerical simulation and experimental validation," Energy, Elsevier, vol. 209(C).
    8. Bianco, Vincenzo & Scarpa, Federico & Tagliafico, Luca A., 2018. "Numerical analysis of the Al2O3-water nanofluid forced laminar convection in an asymmetric heated channel for application in flat plate PV/T collector," Renewable Energy, Elsevier, vol. 116(PA), pages 9-21.
    9. Gao, Yuanzhi & Hu, Guohao & Zhang, Yuzhuo & Zhang, Xiaosong, 2022. "An experimental study of a hybrid photovoltaic thermal system based on ethanol phase change self-circulation technology: Energy and exergy analysis," Energy, Elsevier, vol. 238(PA).
    10. Hwi-Ung Choi & Kwang-Hwan Choi, 2022. "Performance Evaluation of PVT Air Collector Coupled with a Triangular Block in Actual Climate Conditions in Korea," Energies, MDPI, vol. 15(11), pages 1-12, June.
    11. Rejeb, Oussama & Gaillard, Leon & Giroux-Julien, Stéphanie & Ghenai, Chaouki & Jemni, Abdelmajid & Bettayeb, Maamar & Menezo, Christophe, 2020. "Novel solar PV/Thermal collector design for the enhancement of thermal and electrical performances," Renewable Energy, Elsevier, vol. 146(C), pages 610-627.
    12. Jouybari, H. Javaniyan & Saedodin, S. & Zamzamian, A. & Nimvari, M. Eshagh & Wongwises, S., 2017. "Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: An experimental study," Renewable Energy, Elsevier, vol. 114(PB), pages 1407-1418.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:217:y:2023:i:c:s0960148123011606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.