IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v216y2023ics0960148123009758.html
   My bibliography  Save this article

Offshore wind farm layout optimization using ensemble methods

Author

Listed:
  • Eikrem, Kjersti Solberg
  • Lorentzen, Rolf Johan
  • Faria, Ricardo
  • Stordal, Andreas Størksen
  • Godard, Alexandre

Abstract

When planning wind farms it is important to optimize the layout to increase production and reduce costs. In this paper we minimize the levelized cost of energy (LCOE) for a floating wind farm using wind data in an area around Porto Santo in Portugal. We use ensemble based optimization (EnOpt), which is frequently applied in the geophysical community to find optimal controls of oil reservoirs. EnOpt is usually used for unconstrained optimization problems or for problems with simple constraints, for example upper and lower bounds on the optimization variables. Here we consider a layout problem with many constraints on the distances between turbines. To handle the constraints, we use an extension of EnOpt called EPF-EnOpt, in which the constrained problem is replaced by a series of unconstrained problems with increasing penalty terms. We compare the performance of this method with EnOpt with a fixed penalty term, and with a deterministic gradient method. All the tested methods reduce the LCOE, but EPF-EnOpt gives better results than both a single run of EnOpt with a fixed penalty term and the deterministic gradient method, and at a lower computational cost than using the gradient method. We also consider the problem of maximizing the annual energy production without taking into account any costs. EPF-EnOpt performs the best also for this problem.

Suggested Citation

  • Eikrem, Kjersti Solberg & Lorentzen, Rolf Johan & Faria, Ricardo & Stordal, Andreas Størksen & Godard, Alexandre, 2023. "Offshore wind farm layout optimization using ensemble methods," Renewable Energy, Elsevier, vol. 216(C).
  • Handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009758
    DOI: 10.1016/j.renene.2023.119061
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123009758
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119061?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emami, Alireza & Noghreh, Pirooz, 2010. "New approach on optimization in placement of wind turbines within wind farm by genetic algorithms," Renewable Energy, Elsevier, vol. 35(7), pages 1559-1564.
    2. Chen, K. & Song, M.X. & Zhang, X. & Wang, S.F., 2016. "Wind turbine layout optimization with multiple hub height wind turbines using greedy algorithm," Renewable Energy, Elsevier, vol. 96(PA), pages 676-686.
    3. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    4. Nieradzinska, K. & MacIver, C. & Gill, S. & Agnew, G.A. & Anaya-Lara, O. & Bell, K.R.W., 2016. "Optioneering analysis for connecting Dogger Bank offshore wind farms to the GB electricity network," Renewable Energy, Elsevier, vol. 91(C), pages 120-129.
    5. Rodrigues, S. & Bauer, P. & Bosman, Peter A.N., 2016. "Multi-objective optimization of wind farm layouts – Complexity, constraint handling and scalability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 587-609.
    6. Ulku, I. & Alabas-Uslu, C., 2019. "A new mathematical programming approach to wind farm layout problem under multiple wake effects," Renewable Energy, Elsevier, vol. 136(C), pages 1190-1201.
    7. Bastankhah, Majid & Porté-Agel, Fernando, 2014. "A new analytical model for wind-turbine wakes," Renewable Energy, Elsevier, vol. 70(C), pages 116-123.
    8. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
    9. José F. Herbert-Acero & Oliver Probst & Pierre-Elouan Réthoré & Gunner Chr. Larsen & Krystel K. Castillo-Villar, 2014. "A Review of Methodological Approaches for the Design and Optimization of Wind Farms," Energies, MDPI, vol. 7(11), pages 1-87, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adalberto Ospino-Castro & Sharys Romero Navas & Carlos Robles-Algarín, 2024. "Methodology for Generating a Reference Wind Year for Offshore Wind Energy: A Case Study in La Guajira, Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 14(5), pages 356-364, September.
    2. Yang, Bo & Li, Miwei & Qin, Risheng & Luo, Enbo & Duan, Jinhang & Liu, Bingqiang & Wang, Yutong & Wang, Jingbo & Jiang, Lin, 2024. "Extracted power optimization of hybrid wind-wave energy converters array layout via enhanced snake optimizer," Energy, Elsevier, vol. 293(C).
    3. Kim, Taewan & Song, Jeonghwan & You, Donghyun, 2024. "Optimization of a wind farm layout to mitigate the wind power intermittency," Applied Energy, Elsevier, vol. 367(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azlan, F. & Kurnia, J.C. & Tan, B.T. & Ismadi, M.-Z., 2021. "Review on optimisation methods of wind farm array under three classical wind condition problems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    3. Guirguis, David & Romero, David A. & Amon, Cristina H., 2017. "Gradient-based multidisciplinary design of wind farms with continuous-variable formulations," Applied Energy, Elsevier, vol. 197(C), pages 279-291.
    4. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2018. "Realistic Wind Farm Layout Optimization through Genetic Algorithms Using a Gaussian Wake Model," Energies, MDPI, vol. 11(12), pages 1-26, November.
    5. Abdelsalam, Ali M. & El-Shorbagy, M.A., 2018. "Optimization of wind turbines siting in a wind farm using genetic algorithm based local search," Renewable Energy, Elsevier, vol. 123(C), pages 748-755.
    6. Nicolas Kirchner-Bossi & Fernando Porté-Agel, 2021. "Wind Farm Area Shape Optimization Using Newly Developed Multi-Objective Evolutionary Algorithms," Energies, MDPI, vol. 14(14), pages 1-25, July.
    7. Wang, Longyan & Cholette, Michael E. & Zhou, Yunkai & Yuan, Jianping & Tan, Andy C.C. & Gu, Yuantong, 2018. "Effectiveness of optimized control strategy and different hub height turbines on a real wind farm optimization," Renewable Energy, Elsevier, vol. 126(C), pages 819-829.
    8. Song, Mengxuan & Chen, Kai & Wang, Jun, 2020. "A two-level approach for three-dimensional micro-siting optimization of large-scale wind farms," Energy, Elsevier, vol. 190(C).
    9. Hu, Weicheng & Yang, Qingshan & Chen, Hua-Peng & Guo, Kunpeng & Zhou, Tong & Liu, Min & Zhang, Jian & Yuan, Ziting, 2022. "A novel approach for wind farm micro-siting in complex terrain based on an improved genetic algorithm," Energy, Elsevier, vol. 251(C).
    10. Ulku, I. & Alabas-Uslu, C., 2019. "A new mathematical programming approach to wind farm layout problem under multiple wake effects," Renewable Energy, Elsevier, vol. 136(C), pages 1190-1201.
    11. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    12. Kyoungboo Yang & Kyungho Cho, 2019. "Simulated Annealing Algorithm for Wind Farm Layout Optimization: A Benchmark Study," Energies, MDPI, vol. 12(23), pages 1-15, November.
    13. Yang, Kyoungboo & Kwak, Gyeongil & Cho, Kyungho & Huh, Jongchul, 2019. "Wind farm layout optimization for wake effect uniformity," Energy, Elsevier, vol. 183(C), pages 983-995.
    14. Dhoot, Aditya & Antonini, Enrico G.A. & Romero, David A. & Amon, Cristina H., 2021. "Optimizing wind farms layouts for maximum energy production using probabilistic inference: Benchmarking reveals superior computational efficiency and scalability," Energy, Elsevier, vol. 223(C).
    15. Houssem R. E. H. Bouchekara & Yusuf A. Sha’aban & Mohammad S. Shahriar & Makbul A. M. Ramli & Abdullahi A. Mas’ud, 2023. "Wind Farm Layout Optimization/Expansion with Real Wind Turbines Using a Multi-Objective EA Based on an Enhanced Inverted Generational Distance Metric Combined with the Two-Archive Algorithm 2," Sustainability, MDPI, vol. 15(3), pages 1-32, January.
    16. Biswas, Partha P. & Suganthan, P.N. & Amaratunga, Gehan A.J., 2018. "Decomposition based multi-objective evolutionary algorithm for windfarm layout optimization," Renewable Energy, Elsevier, vol. 115(C), pages 326-337.
    17. Guoqing Huang & Yao Chen & Ke Li & Jiangke Luo & Sai Zhang & Mingming Lv, 2024. "A Two-Step Grid–Coordinate Optimization Method for a Wind Farm with a Regular Layout Using a Genetic Algorithm," Energies, MDPI, vol. 17(13), pages 1-22, July.
    18. Yildiz, Anil & Mern, John & Kochenderfer, Mykel J. & Howland, Michael F., 2023. "Towards sequential sensor placements on a wind farm to maximize lifetime energy and profit," Renewable Energy, Elsevier, vol. 216(C).
    19. Feng, Ju & Shen, Wen Zhong, 2017. "Design optimization of offshore wind farms with multiple types of wind turbines," Applied Energy, Elsevier, vol. 205(C), pages 1283-1297.
    20. Yu, Xiaobing & Lu, Yangchen, 2023. "Reinforcement learning-based multi-objective differential evolution for wind farm layout optimization," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:216:y:2023:i:c:s0960148123009758. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.