IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v266y2023ics0360544222033217.html
   My bibliography  Save this article

Optimization of up-flow velocity and feed flow rate in up-flow anaerobic sludge blanket fixed-film reactor on bio-hydrogen production from palm oil mill effluent

Author

Listed:
  • Akhbari, Azam
  • Ibrahim, Shaliza
  • Ahmad, Muhammad Shakeel

Abstract

The present study aims to optimize key operational parameters of the up-flow anaerobic sludge blanket fixed-film (UASFF) reactor using response surface methodology (RSM). A central composite design (CCD) has been applied to accomplish thirteen experimental runs given two main variables, namely feed flow rate (Qf), and up-flow velocity (Vup). The maximum hydrogen content, hydrogen production rate (HPR), hydrogen yield (HY), and COD removal were achieved at 55%, 4800 mL H2/cycle, 321 mL H2/g-COD, and 24.33%, respectively at Qf 8 L/cycle (HRT = cycle = 10.5 h) and Vup 2.0 m/h. The performance of the parameters from the optimum identified area was assessed at Qf 5.5 L/cycle (HRT = 15.3 h), and Vup 1.8 m/h, resulted in a maximum hydrogen content, HY, and HPR of 72%, 340 mL H2/g-COD, and 5100 mL H2/cycle, respectively. At optimum conditions, Clostridium sensu stricto 1 was found to be the dominant hydrogen-producing bacteria in the system. The results of this study may provide a practical basis for developing a UASFF reactor prototype based on empirical data.

Suggested Citation

  • Akhbari, Azam & Ibrahim, Shaliza & Ahmad, Muhammad Shakeel, 2023. "Optimization of up-flow velocity and feed flow rate in up-flow anaerobic sludge blanket fixed-film reactor on bio-hydrogen production from palm oil mill effluent," Energy, Elsevier, vol. 266(C).
  • Handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033217
    DOI: 10.1016/j.energy.2022.126435
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222033217
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126435?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Abbasi, Tasneem & Abbasi, S.A., 2012. "Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1696-1708.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Zhihong & Guo, Zhigang & Yang, Jian & Wang, Qiuwang, 2023. "Numerical investigation of methane steam reforming in packed bed reactor with internal helical heat fins," Energy, Elsevier, vol. 278(PB).
    2. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    3. Akhbari, Azam & Ibrahim, Shaliza & Ahmad, Muhammad Shakeel, 2023. "Feasibility of semi-pilot scale up-flow anaerobic sludge blanket fixed-film reactor for fermentative bio-hydrogen production from palm oil mill effluent," Renewable Energy, Elsevier, vol. 212(C), pages 612-620.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Liang & Zhao, Qingchuan & Wu, Xuee & Li, Xiangzhen & Li, Qingbiao & Wang, Yuanpeng, 2016. "Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1358-1367.
    2. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    3. Abbasi, Tasneem & Tauseef, S.M. & Abbasi, S.A., 2012. "Anaerobic digestion for global warming control and energy generation—An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3228-3242.
    4. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    5. Mensah, Johnson Herlich Roslee & Silva, Alex Takeo Yasumura Lima & Santos, Ivan Felipe Silva dos & Ribeiro, Natalia de Souza & Gbedjinou, Michael Jourdain & Nago, Victorien Gerardo & Tiago Filho, Gera, 2021. "Assessment of electricity generation from biogas in Benin from energy and economic viability perspectives," Renewable Energy, Elsevier, vol. 163(C), pages 613-624.
    6. Tauseef, S.M. & Abbasi, Tasneem & Abbasi, S.A., 2013. "Energy recovery from wastewaters with high-rate anaerobic digesters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 704-741.
    7. He, Li & Du, Peng & Chen, Yizhong & Lu, Hongwei & Cheng, Xi & Chang, Bei & Wang, Zheng, 2017. "Advances in microbial fuel cells for wastewater treatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 388-403.
    8. Zhao, Jiamin & Hou, Tingting & Wang, Qian & Zhang, Zhenya & Lei, Zhongfang & Shimizu, Kazuya & Guo, Wenshan & Ngo, Huu Hao, 2021. "Application of biogas recirculation in anaerobic granular sludge system for multifunctional sewage sludge management with high efficacy energy recovery," Applied Energy, Elsevier, vol. 298(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:266:y:2023:i:c:s0360544222033217. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.