IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4411-d598859.html
   My bibliography  Save this article

Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel

Author

Listed:
  • Juan F. Bárcenas Graniel

    (Departamento de Ciencias Básicas e Ingeniería, Universidad del Caribe, SM. 78, Manzana 1, Lote 1, Esq. Fraccionamiento Tabachines, Cancun 77528, Mexico
    Coordinación de Hidráulica, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Mexico City 04510, Mexico)

  • Jassiel V. H. Fontes

    (Departamento de Engenharia Naval, Escola Superior de Tecnologia, Universidade do Estado do Amazonas, Av. Darcy Vargas, 1200, Parque Dez de Novembro, Manaus 69050-020, Brazil)

  • Hector F. Gomez Garcia

    (Departamento de Ciencias Básicas e Ingeniería, Universidad del Caribe, SM. 78, Manzana 1, Lote 1, Esq. Fraccionamiento Tabachines, Cancun 77528, Mexico)

  • Rodolfo Silva

    (Coordinación de Hidráulica, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Edificio 17, Ciudad Universitaria, Mexico City 04510, Mexico)

Abstract

This paper presents a techno-economic assessment of hydrokinetic energy of Cozumel Island, where ocean currents have been detected, but tourist activities are paramount. The main objective of this research is to identify devices that have been used to harvest hydrokinetic power elsewhere and perform an economic analysis as to their implementation in the Mexican Caribbean. First, the energy potential of the area was evaluated using simulated data available through the HYCOM consortium. Then, for four pre-commercial and commercial turbines, technical and economic analyses of their deployments were performed. Socio-environmental constraints were reviewed and discussed. Three optimal sites were identified, with an average annual hydrokinetic energy density of 3–6 MWh/m 2 -year. These sites meet the socio-environmental requirements for marine kinetic energy harvesting. Of the turbines considered in the analysis, the best energy price/cost ratio is that of SeaGen device, with a maximum theoretical energy extraction of 1319 MWh/year with a Capacity Factor of 12.5% and a Levelised Cost of Energy (LCOE) of 1148 USD/MWh. Using this device, but assuming a site-specific design that achieves at least 25% of Capacity Factor, 20-year useful life, and a discount rate of 0.125, the LCOE would be 685.6 USD/MWh. The approach presented here can be applied for techno-economic analyses of marine turbines in other regions.

Suggested Citation

  • Juan F. Bárcenas Graniel & Jassiel V. H. Fontes & Hector F. Gomez Garcia & Rodolfo Silva, 2021. "Assessing Hydrokinetic Energy in the Mexican Caribbean: A Case Study in the Cozumel Channel," Energies, MDPI, vol. 14(15), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4411-:d:598859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4411/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4411/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Webb, A. & Waseda, T. & Kiyomatsu, K., 2020. "A high-resolution, long-term wave resource assessment of Japan with wave–current effects," Renewable Energy, Elsevier, vol. 161(C), pages 1341-1358.
    2. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    3. George E. Halkos & Eleni-Christina Gkampoura, 2020. "Reviewing Usage, Potentials, and Limitations of Renewable Energy Sources," Energies, MDPI, vol. 13(11), pages 1-19, June.
    4. Anthony Roy & François Auger & Florian Dupriez-Robin & Salvy Bourguet & Quoc Tuan Tran, 2018. "Electrical Power Supply of Remote Maritime Areas: A Review of Hybrid Systems Based on Marine Renewable Energies," Energies, MDPI, vol. 11(7), pages 1-27, July.
    5. Chen, Falin, 2010. "Kuroshio power plant development plan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2655-2668, December.
    6. Kabir, Asif & Lemongo-Tchamba, Ivan & Fernandez, Arturo, 2015. "An assessment of available ocean current hydrokinetic energy near the North Carolina shore," Renewable Energy, Elsevier, vol. 80(C), pages 301-307.
    7. Do-Seong Byun & Deirdre E. Hart & Woo-Jin Jeong, 2013. "Tidal Current Energy Resources off the South and West Coasts of Korea: Preliminary Observation-Derived Estimates," Energies, MDPI, vol. 6(2), pages 1-13, January.
    8. Yang, Xiufeng & Haas, Kevin A. & Fritz, Hermann M., 2014. "Evaluating the potential for energy extraction from turbines in the gulf stream system," Renewable Energy, Elsevier, vol. 72(C), pages 12-21.
    9. Ken Tomabechi, 2010. "Energy Resources in the Future," Energies, MDPI, vol. 3(4), pages 1-10, April.
    10. Martínez, M.L. & Vázquez, G. & Pérez-Maqueo, O. & Silva, R. & Moreno-Casasola, P. & Mendoza-González, G. & López-Portillo, J. & MacGregor-Fors, I. & Heckel, G. & Hernández-Santana, J.R. & García-Franc, 2021. "A systemic view of potential environmental impacts of ocean energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    11. Vazquez, A. & Iglesias, G., 2016. "Capital costs in tidal stream energy projects – A spatial approach," Energy, Elsevier, vol. 107(C), pages 215-226.
    12. Ken Sawada & Nobuhiko Handa, 1998. "Variability of the path of the Kuroshio ocean current over the past 25,000 years," Nature, Nature, vol. 392(6676), pages 592-595, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francisco Bañuelos-García & Michael Ring & Edgar Mendoza & Rodolfo Silva, 2021. "A Design Procedure for Anchors of Floating Ocean Current Turbines on Weak Rock," Energies, MDPI, vol. 14(21), pages 1-31, November.
    2. Isabel Bello-Ontiveros & Gabriela Mendoza-González & Lizbeth Márquez-Pérez & Rodolfo Silva, 2022. "Using Spatial Planning Tools to Identify Potential Areas for the Harnessing of Ocean Currents in the Mexican Caribbean," Land, MDPI, vol. 11(5), pages 1-23, April.
    3. Puertas-Frías, Carmen M. & Willson, Clinton S. & García-Salaberri, Pablo A., 2022. "Design and economic analysis of a hydrokinetic turbine for household applications," Renewable Energy, Elsevier, vol. 199(C), pages 587-598.
    4. Luis A. Garcia-Reyes & Aurelio Beltrán-Telles & Francisco Bañuelos-Ruedas & Manuel Reta-Hernández & Juan M. Ramírez-Arredondo & Rodolfo Silva-Casarín, 2022. "Level-Shift PWM Control of a Single-Phase Full H-Bridge Inverter for Grid Interconnection, Applied to Ocean Current Power Generation," Energies, MDPI, vol. 15(5), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Binghui & de Queiroz, Anderson Rodrigo & DeCarolis, Joseph F. & Bane, John & He, Ruoying & Keeler, Andrew G. & Neary, Vincent S., 2017. "The economics of electricity generation from Gulf Stream currents," Energy, Elsevier, vol. 134(C), pages 649-658.
    2. Roger Samsó & Júlia Crespin & Antonio García-Olivares & Jordi Solé, 2023. "Examining the Potential of Marine Renewable Energy: A Net Energy Perspective," Sustainability, MDPI, vol. 15(10), pages 1-35, May.
    3. Campisi-Pinto, Salvatore & Gianchandani, Kaushal & Ashkenazy, Yosef, 2020. "Statistical tests for the distribution of surface wind and current speeds across the globe," Renewable Energy, Elsevier, vol. 149(C), pages 861-876.
    4. Nadège Bouchonneau & Arnaud Coutrey & Vivianne Marie Bruère & Moacyr Araújo & Alex Costa da Silva, 2023. "Finite Element Modeling and Simulation of a Submerged Wave Energy Converter System for Application to Oceanic Islands in Tropical Atlantic," Energies, MDPI, vol. 16(4), pages 1-17, February.
    5. Wenxiao Chu & Maria Vicidomini & Francesco Calise & Neven Duić & Poul Alborg Østergaard & Qiuwang Wang & Maria da Graça Carvalho, 2022. "Recent Advances in Low-Carbon and Sustainable, Efficient Technology: Strategies and Applications," Energies, MDPI, vol. 15(8), pages 1-30, April.
    6. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    7. Yang, Zhaoqing & García Medina, Gabriel & Neary, Vincent S. & Ahn, Seongho & Kilcher, Levi & Bharath, Aidan, 2023. "Multi-decade high-resolution regional hindcasts for wave energy resource characterization in U.S. coastal waters," Renewable Energy, Elsevier, vol. 212(C), pages 803-817.
    8. Shi, Xueli & Liang, Bingchen & Li, Shaowu & Zhao, Jianchun & Wang, Junhui & Wang, Zhenlu, 2024. "Wave energy resource classification system for the China East Adjacent Seas based on multivariate clustering," Energy, Elsevier, vol. 299(C).
    9. Moghadam, Saman Salehi & Gholamian, Mohammad Reza & Zahedi, Rahim & Shaqaqifar, Maziar, 2024. "Designing a multi-purpose network of sustainable and closed-loop renewable energy supply chain, considering reliability and circular economy," Applied Energy, Elsevier, vol. 369(C).
    10. Fouz, D.M. & Carballo, R. & López, I. & González, X.P. & Iglesias, G., 2023. "A methodology for cost-effective analysis of hydrokinetic energy projects," Energy, Elsevier, vol. 282(C).
    11. Halkos, George & Managi, Shunsuke, 2023. "New developments in the disciplines of environmental and resource economics," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 513-522.
    12. Ahmed Hussain Elmetwaly & Ramy Adel Younis & Abdelazeem Abdallah Abdelsalam & Ahmed Ibrahim Omar & Mohamed Metwally Mahmoud & Faisal Alsaif & Adel El-Shahat & Mohamed Attya Saad, 2023. "Modeling, Simulation, and Experimental Validation of a Novel MPPT for Hybrid Renewable Sources Integrated with UPQC: An Application of Jellyfish Search Optimizer," Sustainability, MDPI, vol. 15(6), pages 1-30, March.
    13. Razi, P. & Ramaprabhu, P. & Tarey, P. & Muglia, M. & Vermillion, C., 2022. "A low-order wake interaction modeling framework for the performance of ocean current turbines under turbulent conditions," Renewable Energy, Elsevier, vol. 200(C), pages 1602-1617.
    14. Daniel Ştefan Armeanu & Georgeta Vintilă & Ştefan Cristian Gherghina, 2017. "Does Renewable Energy Drive Sustainable Economic Growth? Multivariate Panel Data Evidence for EU-28 Countries," Energies, MDPI, vol. 10(3), pages 1-21, March.
    15. Nowotny, Janusz & Dodson, John & Fiechter, Sebastian & Gür, Turgut M. & Kennedy, Brendan & Macyk, Wojciech & Bak, Tadeusz & Sigmund, Wolfgang & Yamawaki, Michio & Rahman, Kazi A., 2018. "Towards global sustainability: Education on environmentally clean energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2541-2551.
    16. Almoghayer, Mohammed A. & Woolf, David K. & Kerr, Sandy & Davies, Gareth, 2022. "Integration of tidal energy into an island energy system – A case study of Orkney islands," Energy, Elsevier, vol. 242(C).
    17. Dong-Hui Ko & Jaekwan Chung & Kwang-Soo Lee & Jin-Soon Park & Jin-Hak Yi, 2019. "Current Policy and Technology for Tidal Current Energy in Korea," Energies, MDPI, vol. 12(9), pages 1-15, May.
    18. Le Thanh Tiep & Ngo Quang Huan & Tran Thi Thuy Hong, 2020. "The Impact of Renewable Energy on Sustainable Economic Growth in Vietnam," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 359-369.
    19. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Shamim, Tariq & Domenighini, Piergiovanni & Cotana, Franco & Wang, Jinwen & Fantozzi, Francesco & Bianchi, Francesco, 2023. "Transition toward net zero emissions - Integration and optimization of renewable energy sources: Solar, hydro, and biomass with the local grid station in central Italy," Renewable Energy, Elsevier, vol. 207(C), pages 672-686.
    20. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4411-:d:598859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.