IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i17p5423-d626377.html
   My bibliography  Save this article

Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey

Author

Listed:
  • Margarita Andreas Dareioti

    (Department of Chemical Engineering, University of Patras, 1 Karatheodori str., University Campus, 26500 Patras, Greece)

  • Aikaterini Ioannis Vavouraki

    (School of Mineral Resources Engineering, Technical University of Crete, 73100 Chania, Greece
    Department of Agriculture, School of Agricultural Science, Hellenic Mediterranean University, 71004 Heraklion-Crete, Greece)

  • Konstantina Tsigkou

    (Department of Chemical Engineering, University of Patras, 1 Karatheodori str., University Campus, 26500 Patras, Greece)

  • Michael Kornaros

    (Department of Chemical Engineering, University of Patras, 1 Karatheodori str., University Campus, 26500 Patras, Greece)

Abstract

The growing interest in processes that involve biomass conversion to renewable energy, such as anaerobic digestion, has stimulated research in this field in order to assess the optimum conditions for biogas production from abundant feedstocks, like agro-industrial wastes. Anaerobic digestion is an attractive process for the decomposition of organic wastes via a complex microbial consortium and subsequent conversion of metabolic intermediates to hydrogen and methane. The present study focused on the exploitation of liquid cow manure (LCM) and cheese whey (CW) as noneasily and easily biodegradable sources, respectively, using continuous stirred-tank reactors for biogas production, and a comparison was presented between single- and two-stage anaerobic digestion systems. No significant differences were found concerning LCM treatment, in a two-stage system compared to a single one, concluding that LCM can be treated by implementing a single-stage process, as a recalcitrant substrate, with the greatest methane production rate of 0.67 L CH 4 /(L R ·d) at an HRT of 16 d. On the other hand, using the easily biodegradable CW as a monosubstrate, the two-stage process was considered a better treatment system compared to a single one. During the single-stage process, operational problems were observed due to the limited buffering capacity of CW. However, the two-stage anaerobic digestion of CW produced a stable methane production rate of 0.68 L CH 4 /(L R ·d) or 13.7 L CH 4 /L feed , while the total COD was removed by 76%.

Suggested Citation

  • Margarita Andreas Dareioti & Aikaterini Ioannis Vavouraki & Konstantina Tsigkou & Michael Kornaros, 2021. "Assessment of Single- vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey," Energies, MDPI, vol. 14(17), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5423-:d:626377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/17/5423/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/17/5423/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elbeshbishy, Elsayed & Dhar, Bipro Ranjan & Nakhla, George & Lee, Hyung-Sool, 2017. "A critical review on inhibition of dark biohydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 656-668.
    2. Aspasia A. Chatzipaschali & Anastassios G. Stamatis, 2012. "Biotechnological Utilization with a Focus on Anaerobic Treatment of Cheese Whey: Current Status and Prospects," Energies, MDPI, vol. 5(9), pages 1-34, September.
    3. Yuan, Haiping & Zhu, Nanwen, 2016. "Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 429-438.
    4. Javier Martínez-Dalmau & Julio Berbel & Rafaela Ordóñez-Fernández, 2021. "Nitrogen Fertilization. A Review of the Risks Associated with the Inefficiency of Its Use and Policy Responses," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    5. Tsigkou, Konstantina & Tsafrakidou, Panagiota & Kopsahelis, Alexandros & Zagklis, Dimitris & Zafiri, Constantina & Kornaros, Michael, 2020. "Used disposable nappies and expired food products valorisation through one- & two-stage anaerobic co-digestion," Renewable Energy, Elsevier, vol. 147(P1), pages 610-619.
    6. Tsigkou, Konstantina & Tsafrakidou, Panagiota & Zagklis, Dimitris & Panagiotouros, Anastasios & Sionakidis, Dimitris & Zontos, Dimitris Marios & Zafiri, Constantina & Kornaros, Michael, 2021. "Used disposable nappies and expired food products co-digestion: A pilot-scale system assessment," Renewable Energy, Elsevier, vol. 165(P1), pages 109-117.
    7. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    8. David M. Berendes & Patricia J. Yang & Amanda Lai & David Hu & Joe Brown, 2018. "Estimation of global recoverable human and animal faecal biomass," Nature Sustainability, Nature, vol. 1(11), pages 679-685, November.
    9. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    2. Graciela M. L. Ruiz-Aguilar & Hector G. Nuñez-Palenius & Nanh Lovanh & Sarai Camarena-Martínez, 2022. "Comparative Study of Methane Production in a One-Stage vs. Two-Stage Anaerobic Digestion Process from Raw Tomato Plant Waste," Energies, MDPI, vol. 15(23), pages 1-12, December.
    3. Marcin Dębowski & Joanna Kazimierowicz & Aneta Ignaciuk & Sandra Mlonek & Marcin Zieliński, 2024. "Application of Recycled Filling to Improve the Purification Performance of Confectionery Wastewater in a Vertical Anaerobic Labyrinth Flow Bioreactor," Energies, MDPI, vol. 17(11), pages 1-24, May.
    4. Lyes Bennamoun, 2022. "Bioresource Technology for Bioenergy: Development and Trends," Energies, MDPI, vol. 15(5), pages 1-2, February.
    5. Tsigkou, Konstantina & Sventzouri, Eirini & Zafiri, Constantina & Kornaros, Michael, 2023. "Digestate recirculation rate optimization for the enhancement of hydrogen production: The case of disposable nappies and fruit/vegetable waste valorization in a mesophilic two-stage anaerobic digestio," Renewable Energy, Elsevier, vol. 215(C).
    6. Andrey A. Kovalev & Elza R. Mikheeva & Vladimir Panchenko & Inna V. Katraeva & Dmitriy A. Kovalev & Elena A. Zhuravleva & Yuriy V. Litti, 2022. "Optimization of Energy Production from Two-Stage Mesophilic–Thermophilic Anaerobic Digestion of Cheese Whey Using a Response Surface Methodology Approach," Energies, MDPI, vol. 15(23), pages 1-14, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manthos, Georgios & Dareioti, Margarita & Zagklis, Dimitris & Kornaros, Michael, 2023. "Using biochemical methane potential results for the economic optimization of continuous anaerobic digestion systems: the effect of substrates’ synergy," Renewable Energy, Elsevier, vol. 211(C), pages 296-306.
    2. Vincenzo Torretta & Athanasia K. Tolkou & Ioannis A. Katsoyiannis & Francesca Maria Caccamo & Marco Carnevale Miino & Marco Baldi & Maria Cristina Collivignarelli, 2021. "Enhancement of Methanogenic Activity in Volumetrically Undersized Reactor by Mesophilic Co-Digestion of Sewage Sludge and Aqueous Residue," Sustainability, MDPI, vol. 13(14), pages 1-11, July.
    3. Tsigkou, Konstantina & Sventzouri, Eirini & Zafiri, Constantina & Kornaros, Michael, 2023. "Digestate recirculation rate optimization for the enhancement of hydrogen production: The case of disposable nappies and fruit/vegetable waste valorization in a mesophilic two-stage anaerobic digestio," Renewable Energy, Elsevier, vol. 215(C).
    4. Yellezuome, Dominic & Zhu, Xianpu & Wang, Zengzhen & Liu, Ronghou, 2022. "Mitigation of ammonia inhibition in anaerobic digestion of nitrogen-rich substrates for biogas production by ammonia stripping: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    5. Miguel Casallas-Ojeda & Luz Elba Torres-Guevara & Diana M. Caicedo-Concha & María F. Gómez, 2021. "Opportunities for Waste to Energy in the Milk Production Industry: Perspectives for the Circular Economy," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    6. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    7. Roberto Eloy Hernández Regalado & Jurek Häner & Elmar Brügging & Jens Tränckner, 2022. "Techno-Economic Assessment of Solid–Liquid Biogas Treatment Plants for the Agro-Industrial Sector," Energies, MDPI, vol. 15(12), pages 1-20, June.
    8. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    11. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    12. Muhammad Arif Fikri Hamzah & Jamaliah Md Jahim & Peer Mohamed Abdul & Ahmad Jaril Asis, 2019. "Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent," Energies, MDPI, vol. 12(13), pages 1-16, June.
    13. Sun, Chihe & Xia, Ao & Liao, Qiang & Fu, Qian & Huang, Yun & Zhu, Xun & Wei, Pengfei & Lin, Richen & Murphy, Jerry D., 2018. "Improving production of volatile fatty acids and hydrogen from microalgae and rice residue: Effects of physicochemical characteristics and mix ratios," Applied Energy, Elsevier, vol. 230(C), pages 1082-1092.
    14. Arora, Amarpreet Singh & Nawaz, Alam & Qyyum, Muhammad Abdul & Ismail, Sherif & Aslam, Muhammad & Tawfik, Ahmed & Yun, Choa Mun & Lee, Moonyong, 2021. "Energy saving anammox technology-based nitrogen removal and bioenergy recovery from wastewater: Inhibition mechanisms, state-of-the-art control strategies, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
    16. Saha, Chayan Kumer & Nandi, Rajesh & Akter, Shammi & Hossain, Samira & Kabir, Kazi Bayzid & Kirtania, Kawnish & Islam, Md Tahmid & Guidugli, Laura & Reza, M. Toufiq & Alam, Md Monjurul, 2024. "Technical prospects and challenges of anaerobic co-digestion in Bangladesh: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    17. David Fangueiro & Paula Alvarenga & Rita Fragoso, 2021. "Horticulture and Orchards as New Markets for Manure Valorisation with Less Environmental Impacts," Sustainability, MDPI, vol. 13(3), pages 1-28, January.
    18. Cieciura-Włoch, Weronika & Borowski, Sebastian & Otlewska, Anna, 2020. "Biohydrogen production from fruit and vegetable waste, sugar beet pulp and corn silage via dark fermentation," Renewable Energy, Elsevier, vol. 153(C), pages 1226-1237.
    19. El Ibrahimi, Mohammed & Khay, Ismail & El Maakoul, Anas & Bakhouya, Mohamed, 2022. "Effects of the temperature range on the energy performance of mixed and unmixed digesters with submerged waste: An experimental and CFD simulation study," Renewable Energy, Elsevier, vol. 200(C), pages 1092-1104.
    20. Panagiotis Xypolias & Stergios Vakalis & Ioannis Daskaloudis & Dimitrios Francis Lekkas, 2023. "Hydrothermal Carbonization of Dry Anaerobic Digestion Residues Derived from Food and Agro Wastes in Lesvos Island," Energies, MDPI, vol. 16(12), pages 1-14, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:17:p:5423-:d:626377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.