IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v212y2023icp761-768.html
   My bibliography  Save this article

Feasibility test anaerobically enhancing methane yield under the injection of hydrogen and carbon dioxide

Author

Listed:
  • Lee, Eun Seo
  • Park, Seon Yeong
  • Kim, Chang Gyun

Abstract

The anaerobic conversion of surplus hydrogen to methane by hydrogenotrophic methanogen in an anaerobic digester has been attempted to overcome the drawbacks of hydrogen uselessly escaped from small or middle-scale industries. A biochemical methane potential test was thus performed to evaluate the methane production from hydrogen and carbon dioxide (H2/CO2 = 4:1) injected directly into the reactors at mesophilic temperature (38 °C) for 30 days. The cumulative methane yield increased stepwise, ultimately reaching a maximum of 143.94 NmL CH4/g VSadd at the end of the experiment, which was 56% higher than the control. After 7 days of incubation, the methane content in the biogas accounted for about 90%, whereas the control showed 10% lower than that. The kinetic study showed the injection of H2/CO2 could reduce the rate of hydrolysis, verifying that the experimental data fit the first-order model better. In the meantime, microbial community analysis showed an increase in relative abundance of hydrogenotrophic methanogens, Methanobacteriales and Methanomicrobiales, in the sludge obtained after the test compared to before, indicating the increased methane yield was dominantly attributed to hydrogenotrophic methanogenesis. This study demonstrated that H2/CO2 injection directly into the anaerobic digester was feasible for ultimately enhancing the quality of biogas.

Suggested Citation

  • Lee, Eun Seo & Park, Seon Yeong & Kim, Chang Gyun, 2023. "Feasibility test anaerobically enhancing methane yield under the injection of hydrogen and carbon dioxide," Renewable Energy, Elsevier, vol. 212(C), pages 761-768.
  • Handle: RePEc:eee:renene:v:212:y:2023:i:c:p:761-768
    DOI: 10.1016/j.renene.2023.05.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123007371
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vo, Truc T.Q. & Xia, Ao & Wall, David M. & Murphy, Jerry D., 2017. "Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems," Renewable Energy, Elsevier, vol. 105(C), pages 495-504.
    2. Pokorna, Dana & Varga, Zdenek & Andreides, Dominik & Zabranska, Jana, 2019. "Adaptation of anaerobic culture to bioconversion of carbon dioxide with hydrogen to biomethane," Renewable Energy, Elsevier, vol. 142(C), pages 167-172.
    3. Midilli, Adnan & Dincer, Ibrahim & Ay, Murat, 2006. "Green energy strategies for sustainable development," Energy Policy, Elsevier, vol. 34(18), pages 3623-3633, December.
    4. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    5. Emebu, Samuel & Pecha, Jiří & Janáčová, Dagmar, 2022. "Review on anaerobic digestion models: Model classification & elaboration of process phenomena," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Panwar, N.L. & Kaushik, S.C. & Kothari, Surendra, 2011. "Role of renewable energy sources in environmental protection: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1513-1524, April.
    7. Rachbauer, Lydia & Voitl, Gregor & Bochmann, Günther & Fuchs, Werner, 2016. "Biological biogas upgrading capacity of a hydrogenotrophic community in a trickle-bed reactor," Applied Energy, Elsevier, vol. 180(C), pages 483-490.
    8. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    9. F. Delogu & B. J. Kunath & P. N. Evans & M. Ø. Arntzen & T. R. Hvidsten & P. B. Pope, 2020. "Integration of absolute multi-omics reveals dynamic protein-to-RNA ratios and metabolic interplay within mixed-domain microbiomes," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    10. Li, Wanwu & Khalid, Habiba & Zhu, Zhe & Zhang, Ruihong & Liu, Guangqing & Chen, Chang & Thorin, Eva, 2018. "Methane production through anaerobic digestion: Participation and digestion characteristics of cellulose, hemicellulose and lignin," Applied Energy, Elsevier, vol. 226(C), pages 1219-1228.
    11. Yun, Yeo-Myeong & Sung, Shihwu & Kang, Seoktae & Kim, Mi-Sun & Kim, Dong-Hoon, 2017. "Enrichment of hydrogenotrophic methanogens by means of gas recycle and its application in biogas upgrading," Energy, Elsevier, vol. 135(C), pages 294-302.
    12. Mao, Chunlan & Feng, Yongzhong & Wang, Xiaojiao & Ren, Guangxin, 2015. "Review on research achievements of biogas from anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 540-555.
    13. Yáñez, María & Ortiz, Alfredo & Brunaud, Braulio & Grossmann, Ignacio E. & Ortiz, Inmaculada, 2018. "Contribution of upcycling surplus hydrogen to design a sustainable supply chain: The case study of Northern Spain," Applied Energy, Elsevier, vol. 231(C), pages 777-787.
    14. Ware, Aidan & Power, Niamh, 2017. "Modelling methane production kinetics of complex poultry slaughterhouse wastes using sigmoidal growth functions," Renewable Energy, Elsevier, vol. 104(C), pages 50-59.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    2. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Amar Naji & Sabrina Guérin Rechdaoui & Elise Jabagi & Carlyne Lacroix & Sam Azimi & Vincent Rocher, 2023. "Pilot-Scale Anaerobic Co-Digestion of Wastewater Sludge with Lignocellulosic Waste: A Study of Performance and Limits," Energies, MDPI, vol. 16(18), pages 1-13, September.
    4. Obianuju Patience Ilo & Mulala Danny Simatele & S’phumelele Lucky Nkomo & Ntandoyenkosi Malusi Mkhize & Nagendra Gopinath Prabhu, 2021. "Methodological Approaches to Optimising Anaerobic Digestion of Water Hyacinth for Energy Efficiency in South Africa," Sustainability, MDPI, vol. 13(12), pages 1-17, June.
    5. Singh, Deval & Tembhare, Mamta & Machhirake, Nitesh & Kumar, Sunil, 2023. "Biogas generation potential of discarded food waste residue from ultra-processing activities at food manufacturing and packaging industry," Energy, Elsevier, vol. 263(PE).
    6. Latifi, Pooria & Karrabi, Mohsen & Danesh, Shahnaz, 2019. "Anaerobic co-digestion of poultry slaughterhouse wastes with sewage sludge in batch-mode bioreactors (effect of inoculum-substrate ratio and total solids)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 288-296.
    7. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    8. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    9. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    10. Ishtiaq Ahmed & Muhammad Anjum Zia & Huma Afzal & Shaheez Ahmed & Muhammad Ahmad & Zain Akram & Farooq Sher & Hafiz M. N. Iqbal, 2021. "Socio-Economic and Environmental Impacts of Biomass Valorisation: A Strategic Drive for Sustainable Bioeconomy," Sustainability, MDPI, vol. 13(8), pages 1-32, April.
    11. Néméhie Lawson & Merlin Alvarado-Morales & Panagiotis Tsapekos & Irini Angelidaki, 2021. "Techno-Economic Assessment of Biological Biogas Upgrading Based on Danish Biogas Plants," Energies, MDPI, vol. 14(24), pages 1-18, December.
    12. Berk, Istemi & Kasman, Adnan & Kılınç, Dilara, 2020. "Towards a common renewable future: The System-GMM approach to assess the convergence in renewable energy consumption of EU countries," Energy Economics, Elsevier, vol. 87(C).
    13. Ma, Shuaishuai & Wang, Hongliang & Li, Jingxue & Fu, Yu & Zhu, Wanbin, 2019. "Methane production performances of different compositions in lignocellulosic biomass through anaerobic digestion," Energy, Elsevier, vol. 189(C).
    14. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    16. Sandra Gonzalez-Piedra & Héctor Hernández-García & Juan M. Perez-Morales & Laura Acosta-Domínguez & Juan-Rodrigo Bastidas-Oyanedel & Eliseo Hernandez-Martinez, 2021. "A Study on the Feasibility of Anaerobic Co-Digestion of Raw Cheese Whey with Coffee Pulp Residues," Energies, MDPI, vol. 14(12), pages 1-11, June.
    17. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Zhang, Jingxin & Kan, Xiang & Shen, Ye & Loh, Kai-Chee & Wang, Chi-Hwa & Dai, Yanjun & Tong, Yen Wah, 2018. "A hybrid biological and thermal waste-to-energy system with heat energy recovery and utilization for solid organic waste treatment," Energy, Elsevier, vol. 152(C), pages 214-222.
    19. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    20. Manthos, Georgios & Dareioti, Margarita & Zagklis, Dimitris & Kornaros, Michael, 2023. "Using biochemical methane potential results for the economic optimization of continuous anaerobic digestion systems: the effect of substrates’ synergy," Renewable Energy, Elsevier, vol. 211(C), pages 296-306.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:212:y:2023:i:c:p:761-768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.