IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp604-617.html
   My bibliography  Save this article

Effects of condensate film flowing on condensation heat and mass-transfer deterioration on some regions within water-recovery module consisted of micro-porous ceramic membranes

Author

Listed:
  • Yang, Boran
  • Sun, Shi
  • Shang, Fumin
  • Hu, Nan
  • Chen, Haiping

Abstract

Heat-transfer deterioration is a thermal phenomenon existing one or multiple wall temperature fluctuation along the flowing direction on porous heat-transfer surface. Effects of condensate film on deterioration phenomenon for non-condensation heat-transfer process has been reported in the literature, but for condensation process is seldom proposed and specifically researched. Here, the condensation heat and mass-transfer characteristics on micro-porous ceramic membrane module is investigated experimentally and numerically, with absolute humidity of artificial flue gas, inlet temperature of cooling water, volume flux of cooling water covered the ranges of 0.6375–0.6845 kg/m3, 294.4–297.2 K, 0.32–0.41 m3/s, respectively. Sudden temperature fluctuation and collapsing water-recovery efficiency are observed nearby 1/3 region of the ceramic membrane module, which corresponds to the fact that remaining condensate film induces large thermal resistance because of the low thermal conductivity of the gas-like phase, and causes fluctuation of temperature gradient (i.e. condensation heat-transfer deterioration) on membrane surface. It is found that, condensation-regime transition range decreases to 0.763–0.781 at 1/3 region of membrane module, which results in a more remarkable permeation hysteresis effect and a more dominant capillary condensation process. The present findings of this paper are helpful to optimize the design parameters and operation conditions of micro-porous ceramic membrane modules.

Suggested Citation

  • Yang, Boran & Sun, Shi & Shang, Fumin & Hu, Nan & Chen, Haiping, 2023. "Effects of condensate film flowing on condensation heat and mass-transfer deterioration on some regions within water-recovery module consisted of micro-porous ceramic membranes," Renewable Energy, Elsevier, vol. 208(C), pages 604-617.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:604-617
    DOI: 10.1016/j.renene.2023.03.110
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004135
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.110?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Qi & Wu, Lin & Liang, Yan & Xu, Zhicheng & Li, Yungeng & Wang, Jun & Lund, Peter D. & Zeng, Mengyuan & Wang, Wei, 2021. "The role of micro-nano pores in interfacial solar evaporation systems – A review," Applied Energy, Elsevier, vol. 292(C).
    2. Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xiangsheng & Xue, Kaili & Yang, Jihao & Cai, Peihao & Zhang, Heng & Chen, Haiping & Cheng, Chao & Li, Zhaohao, 2023. "Experimental study on liquid-gas phase separation driven by pressure gradient in transport membrane condenser," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharif, M.K. Anuar & Al-Abidi, A.A. & Mat, S. & Sopian, K. & Ruslan, M.H. & Sulaiman, M.Y. & Rosli, M.A.M., 2015. "Review of the application of phase change material for heating and domestic hot water systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 557-568.
    2. Zhao, Dongliang & Tan, Gang, 2015. "Numerical analysis of a shell-and-tube latent heat storage unit with fins for air-conditioning application," Applied Energy, Elsevier, vol. 138(C), pages 381-392.
    3. Li, W.Q. & Qu, Z.G. & Zhang, B.L. & Zhao, K. & Tao, W.Q., 2013. "Thermal behavior of porous stainless-steel fiber felt saturated with phase change material," Energy, Elsevier, vol. 55(C), pages 846-852.
    4. Yang, Sheng & Shao, Xue-Feng & Luo, Jia-Hao & Baghaei Oskouei, Seyedmohsen & Bayer, Özgür & Fan, Li-Wu, 2023. "A novel cascade latent heat thermal energy storage system consisting of erythritol and paraffin wax for deep recovery of medium-temperature industrial waste heat," Energy, Elsevier, vol. 265(C).
    5. Luis Coelho & Maria K. Koukou & George Dogkas & John Konstantaras & Michail Gr. Vrachopoulos & Amandio Rebola & Anastasia Benou & John Choropanitis & Constantine Karytsas & Constantinos Sourkounis & Z, 2022. "Latent Thermal Energy Storage Application in a Residential Building at a Mediterranean Climate," Energies, MDPI, vol. 15(3), pages 1-16, January.
    6. Ikutegbe, Charles A. & Farid, Mohammed M., 2020. "Application of phase change material foam composites in the built environment: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Zhu, Yejun & Huang, Baoling & Wu, Jingshen, 2014. "Optimization of filler distribution for organic phase change material composites: Numerical investigation and entropy analysis," Applied Energy, Elsevier, vol. 132(C), pages 543-550.
    8. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    9. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    10. Alvi, Jahan Zeb & Feng, Yongqiang & Wang, Qian & Imran, Muhammad & Pei, Gang, 2021. "Effect of phase change materials on the performance of direct vapor generation solar organic Rankine cycle system," Energy, Elsevier, vol. 223(C).
    11. Yuqing Tang & Neng Zhu & Siqi Li & Yingzhen Hou, 2023. "Experimental and Numerical Optimization Study on Performance of Phase-Change Thermal Energy Storage System," Energies, MDPI, vol. 16(10), pages 1-39, May.
    12. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    13. Tehrani, S. Saeed Mostafavi & Taylor, Robert A. & Saberi, Pouya & Diarce, Gonzalo, 2016. "Design and feasibility of high temperature shell and tube latent heat thermal energy storage system for solar thermal power plants," Renewable Energy, Elsevier, vol. 96(PA), pages 120-136.
    14. Tan, Ting & Yan, Zhimiao & Zou, Hongxiang & Ma, Kejing & Liu, Fengrui & Zhao, Linchuan & Peng, Zhike & Zhang, Wenming, 2019. "Renewable energy harvesting and absorbing via multi-scale metamaterial systems for Internet of things," Applied Energy, Elsevier, vol. 254(C).
    15. D'Alessandro, Antonella & Pisello, Anna Laura & Fabiani, Claudia & Ubertini, Filippo & Cabeza, Luisa F. & Cotana, Franco, 2018. "Multifunctional smart concretes with novel phase change materials: Mechanical and thermo-energy investigation," Applied Energy, Elsevier, vol. 212(C), pages 1448-1461.
    16. Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Johansson, Maria T. & Söderström, Mats, 2011. "Options for the Swedish steel industry – Energy efficiency measures and fuel conversion," Energy, Elsevier, vol. 36(1), pages 191-198.
    18. Nardin, Gioacchino & Meneghetti, Antonella & Dal Magro, Fabio & Benedetti, Nicole, 2014. "PCM-based energy recovery from electric arc furnaces," Applied Energy, Elsevier, vol. 136(C), pages 947-955.
    19. Kumar, Ashish & Saha, Sandip K., 2020. "Experimental and numerical study of latent heat thermal energy storage with high porosity metal matrix under intermittent heat loads," Applied Energy, Elsevier, vol. 263(C).
    20. Makki, Adham & Omer, Siddig & Sabir, Hisham, 2015. "Advancements in hybrid photovoltaic systems for enhanced solar cells performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 658-684.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:604-617. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.