IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v207y2023icp309-320.html
   My bibliography  Save this article

Prosumer standby fee design: Solving the inequity problem of China's county-wide photovoltaic project promotion

Author

Listed:
  • Lyu, Yuan
  • He, Yongxiu
  • Zhou, Jinghan
  • Xie, Yuxin

Abstract

To achieve the carbon peaking and carbon neutrality goals, China promoted county-wide photovoltaic projects (CWPVs) in 2021. A large number of distributed photovoltaic (DPV) installations have expanded the scale of prosumer. It also brings the inequity problem of prosumer, distribution network system operator (DSO) and consumer--DSO and consumer bear the costs such as access cost and depreciation of stock investment caused by DPV access. Combined with China's current electricity tariff system and the promotion of photovoltaic scale development, this paper proposes a standby fee model based on the principle of “beneficiary apportionment”. In this model, the standby fee mechanism for self-owned power plants is applied to DPV to reduce the implementation cost of the mechanism, and the principle of “beneficiary apportionment” is adopted to ensure the profitability of DPV. This paper takes the CWPV in Hunan Province, China as an example, calculates the standby fee under various electricity metering methods, and determines the most appropriate standby fee by considering factors such as output uncertainty of DPV. Finally, the difficulties in the implementation of standby fee are sorted out.

Suggested Citation

  • Lyu, Yuan & He, Yongxiu & Zhou, Jinghan & Xie, Yuxin, 2023. "Prosumer standby fee design: Solving the inequity problem of China's county-wide photovoltaic project promotion," Renewable Energy, Elsevier, vol. 207(C), pages 309-320.
  • Handle: RePEc:eee:renene:v:207:y:2023:i:c:p:309-320
    DOI: 10.1016/j.renene.2023.03.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123003397
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hennig, Roman J. & Ribó-Pérez, David & de Vries, Laurens J. & Tindemans, Simon H., 2022. "What is a good distribution network tariff?—Developing indicators for performance assessment," Applied Energy, Elsevier, vol. 318(C).
    2. Cludius, Johanna & Hermann, Hauke & Matthes, Felix Chr. & Graichen, Verena, 2014. "The merit order effect of wind and photovoltaic electricity generation in Germany 2008–2016: Estimation and distributional implications," Energy Economics, Elsevier, vol. 44(C), pages 302-313.
    3. Savelli, Iacopo & Morstyn, Thomas, 2021. "Electricity prices and tariffs to keep everyone happy: A framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Omega, Elsevier, vol. 103(C).
    4. Cludius, Johanna & Forrest, Sam & MacGill, Iain, 2014. "Distributional effects of the Australian Renewable Energy Target (RET) through wholesale and retail electricity price impacts," Energy Policy, Elsevier, vol. 71(C), pages 40-51.
    5. Lin, Boqiang & Chen, Jiaying & Wesseh, Presley K., 2022. "Peak-valley tariffs and solar prosumers: Why renewable energy policies should target local electricity markets," Energy Policy, Elsevier, vol. 165(C).
    6. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    7. He, Yongxiu & Che, Yiran & Lyu, Yuan & Lu, Ye & Zhang, Yan, 2022. "Social benefit evaluation of China's photovoltaic poverty alleviation project," Renewable Energy, Elsevier, vol. 187(C), pages 1065-1081.
    8. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2022. "Economic inefficiencies of pricing distributed generation under novel tariff designs," Applied Energy, Elsevier, vol. 313(C).
    9. Eid, Cherrelle & Reneses Guillén, Javier & Frías Marín, Pablo & Hakvoort, Rudi, 2014. "The economic effect of electricity net-metering with solar PV: Consequences for network cost recovery, cross subsidies and policy objectives," Energy Policy, Elsevier, vol. 75(C), pages 244-254.
    10. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2022. "A review of equity in electricity tariffs in the renewable energy era," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Hinz, Fabian & Schmidt, Matthew & Möst, Dominik, 2018. "Regional distribution effects of different electricity network tariff designs with a distributed generation structure: The case of Germany," Energy Policy, Elsevier, vol. 113(C), pages 97-111.
    12. Manuel de Villena, Miguel & Jacqmin, Julien & Fonteneau, Raphael & Gautier, Axel & Ernst, Damien, 2021. "Network tariffs and the integration of prosumers: The case of Wallonia," Energy Policy, Elsevier, vol. 150(C).
    13. Ansarin, Mohammad & Ghiassi-Farrokhfal, Yashar & Ketter, Wolfgang & Collins, John, 2020. "Cross-subsidies among residential electricity prosumers from tariff design and metering infrastructure," Energy Policy, Elsevier, vol. 145(C).
    14. Roulot, Jonathan & Raineri, Ricardo, 2018. "The impacts of photovoltaic electricity self-consumption on value transfers between private and public stakeholders in France," Energy Policy, Elsevier, vol. 122(C), pages 459-473.
    15. Sovacool, Benjamin K. & Barnacle, Max Lacey & Smith, Adrian & Brisbois, Marie Claire, 2022. "Towards improved solar energy justice: Exploring the complex inequities of household adoption of photovoltaic panels," Energy Policy, Elsevier, vol. 164(C).
    16. Picciariello, Angela & Vergara, Claudio & Reneses, Javier & Frías, Pablo & Söder, Lennart, 2015. "Electricity distribution tariffs and distributed generation: Quantifying cross-subsidies from consumers to prosumers," Utilities Policy, Elsevier, vol. 37(C), pages 23-33.
    17. Prata, Ricardo & Carvalho, Pedro M.S. & Azevedo, Inês L., 2018. "Distributional costs of wind energy production in Portugal under the liberalized Iberian market regime," Energy Policy, Elsevier, vol. 113(C), pages 500-512.
    18. Pablo Carvallo, Juan & Bieler, Stephanie & Collins, Myles & Mueller, Joscha & Gehbauer, Christoph & Gotham, Douglas J. & Larsen, Peter H., 2021. "A framework to measure the technical, economic, and rate impacts of distributed solar, electric vehicles, and storage," Applied Energy, Elsevier, vol. 297(C).
    19. Többen, Johannes, 2017. "Regional Net Impacts and Social Distribution Effects of Promoting Renewable Energies in Germany," Ecological Economics, Elsevier, vol. 135(C), pages 195-208.
    20. Iacopo Savelli & Thomas Morstyn, 2020. "Electricity prices and tariffs to keep everyone happy: a framework for fixed and nodal prices coexistence in distribution grids with optimal tariffs for investment cost recovery," Papers 2001.04283, arXiv.org, revised Jun 2021.
    21. Schittekatte, Tim & Momber, Ilan & Meeus, Leonardo, 2018. "Future-proof tariff design: Recovering sunk grid costs in a world where consumers are pushing back," Energy Economics, Elsevier, vol. 70(C), pages 484-498.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuhang Wang & Jingbo Fan, 2023. "Technological Mediation of Photovoltaic System to Improve Rural Sustainability in the Background of Resettlement and Consolidation: Evidence from the Rural Community and Villages in China," Sustainability, MDPI, vol. 15(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyu, Yuan & He, Yongxiu & Li, Shanzi & Zhou, Jinghan & Li, Bo, 2024. "Impact of grid connection cost channeling mechanisms on the development of distributed photovoltaic: The case of China," Energy Policy, Elsevier, vol. 187(C).
    2. Lyu, Yuan & He, Yongxiu & Li, Shanzi & Zhou, Jinghan & Tian, BingYing, 2024. "Channeling approach of prosumer connection costs considering regional differences in China — Evolutionary game among distributed photovoltaic entities," Energy, Elsevier, vol. 289(C).
    3. Vaughan, Jim & Doumen, Sjoerd C. & Kok, Koen, 2023. "Empowering tomorrow, controlling today: A multi-criteria assessment of distribution grid tariff designs," Applied Energy, Elsevier, vol. 341(C).
    4. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 152.
    5. Khan, Hafiz Anwar Ullah & Ünel, Burçin & Dvorkin, Yury, 2023. "Electricity Tariff Design via Lens of Energy Justice," Omega, Elsevier, vol. 117(C).
    6. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    7. Clastres, Cédric & Percebois, Jacques & Rebenaque, Olivier & Solier, Boris, 2019. "Cross subsidies across electricity network users from renewable self-consumption," Utilities Policy, Elsevier, vol. 59(C), pages 1-1.
    8. Christoph Schick & Nikolai Klempp & Kai Hufendiek, 2021. "Impact of Network Charge Design in an Energy System with Large Penetration of Renewables and High Prosumer Shares," Energies, MDPI, vol. 14(21), pages 1-26, October.
    9. Morell-Dameto, Nicolás & Chaves-Ávila, José Pablo & Gómez San Román, Tomás & Schittekatte, Tim, 2023. "Forward-looking dynamic network charges for real-world electricity systems: A Slovenian case study," Energy Economics, Elsevier, vol. 125(C).
    10. Küfeoğlu, Sinan & Pollitt, Michael G., 2019. "The impact of PVs and EVs on domestic electricity network charges: A case study from Great Britain," Energy Policy, Elsevier, vol. 127(C), pages 412-424.
    11. Hendam, Mohamed & Schittekatte, Tim & Abdel-Rahman, Mohamed & Kamh, Mohamed Zakaria, 2022. "Rethinking electricity rate design: Fostering the energy transition in North Africa," Energy Policy, Elsevier, vol. 169(C).
    12. Junhyung Kim & Keon Baek & Eunjung Lee & Jinho Kim, 2023. "Analysis of Net-Metering and Cross-Subsidy Effects in South Korea: Economic Impact across Residential Customer Groups by Electricity Consumption Level," Energies, MDPI, vol. 16(2), pages 1-14, January.
    13. Peter Cappers & Andrew Satchwell & Will Gorman & Javier Reneses, 2019. "Financial Impacts of Net-Metered Distributed PV on a Prototypical Western Utility’s Shareholders and Ratepayers," Energies, MDPI, vol. 12(24), pages 1-19, December.
    14. Askeland, Magnus & Backe, Stian & Bjarghov, Sigurd & Korpås, Magnus, 2021. "Helping end-users help each other: Coordinating development and operation of distributed resources through local power markets and grid tariffs," Energy Economics, Elsevier, vol. 94(C).
    15. Gunkel, Philipp Andreas & Bergaentzlé, Claire-Marie & Keles, Dogan & Scheller, Fabian & Jacobsen, Henrik Klinge, 2023. "Grid tariff designs to address electrification and their allocative impacts," Utilities Policy, Elsevier, vol. 85(C).
    16. Javier Borquez & Hector Chavez & Karina A. Barbosa & Marcela Jamett & Rodrigo Acuna, 2020. "A Simple Distribution Energy Tariff under the Penetration of DG," Energies, MDPI, vol. 13(8), pages 1-17, April.
    17. Csereklyei, Zsuzsanna & Qu, Songze & Ancev, Tihomir, 2019. "The effect of wind and solar power generation on wholesale electricity prices in Australia," Energy Policy, Elsevier, vol. 131(C), pages 358-369.
    18. Mwampashi, Muthe Mathias & Nikitopoulos, Christina Sklibosios & Konstandatos, Otto & Rai, Alan, 2021. "Wind generation and the dynamics of electricity prices in Australia," Energy Economics, Elsevier, vol. 103(C).
    19. Castaneda, Monica & Jimenez, Maritza & Zapata, Sebastian & Franco, Carlos J. & Dyner, Isaac, 2017. "Myths and facts of the utility death spiral," Energy Policy, Elsevier, vol. 110(C), pages 105-116.
    20. Timothé Beaufils & Pierre-Olivier Pineau, 2018. "Structures tarifaires et spirale de la mort : État des lieux des pratiques de tarification dans la distribution d’électricité résidentielle," CIRANO Working Papers 2018s-27, CIRANO.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:207:y:2023:i:c:p:309-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.