IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v193y2022icp715-724.html
   My bibliography  Save this article

Controlled synthesis of MnS/ZnS hybrid material with different morphology as efficient water and urea electrolysis catalyst

Author

Listed:
  • Chen, Nannan
  • Du, Xiaoqiang
  • Zhang, Xiaoshuang

Abstract

Fabrication of earth-abundant, environmentally friendly, high-efficiency and robust bifunctional electrodes for generating hydrogen has become increasingly appealing. Herein, a series of MnS/ZnS nanohybrids grown directly on Ni foams was firstly explored at different temperatures by one-step hydrothermal method for water and urea electrolysis. When it was used as the hydrogen evolution reaction and oxygen evolution reactions catalyst, MZS/NF-180 demonstrates a small overpotentials of 223 mV and 357 mV at a considerable current density of 100 mA cm−2, respectively. Moreover, adapting it as cathode and anode electrode for water splitting in 1.0 M KOH, a low cell voltage of 1.61 V is required for delivering 10 mA cm−2 and cycling lifespan is attained for more than 12 h. Additionally, the electrochemical urea oxidation results demonstrates that MZS/NF-180 demands just cell voltage of 1.37 V (vs RHE) to achieve 100 mA cm−2 in 1 M KOH with 0.5 M urea. And urea-assisted electrolysis cell displayed a low potential of 1.51 V at 10 mA cm−2 and a good stability for a 12 h test. Besides, the theoretical calculations are also conducted to explore the detail of electrocatalyst activity in water splitting.

Suggested Citation

  • Chen, Nannan & Du, Xiaoqiang & Zhang, Xiaoshuang, 2022. "Controlled synthesis of MnS/ZnS hybrid material with different morphology as efficient water and urea electrolysis catalyst," Renewable Energy, Elsevier, vol. 193(C), pages 715-724.
  • Handle: RePEc:eee:renene:v:193:y:2022:i:c:p:715-724
    DOI: 10.1016/j.renene.2022.05.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122006814
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.05.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Meng-Jie & He, Qian & Xiang, Ting & Ya, Hua-Qin & Luo, Hao & Wan, Shanhong & Ding, Jun & He, Jian-Bo, 2023. "Automatic operation of decoupled water electrolysis based on bipolar electrode," Renewable Energy, Elsevier, vol. 203(C), pages 583-591.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:193:y:2022:i:c:p:715-724. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.