Variability index of solar resource based on data from surface and satellite
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2022.10.093
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
- Castillejo-Cuberos, Armando & Escobar, Rodrigo, 2020. "Understanding solar resource variability: An in-depth analysis, using Chile as a case of study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
- Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
- Czekalski, D. & Chochowski, A. & Obstawski, P., 2012. "Parameterization of daily solar irradiance variability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2461-2467.
- Kariuki, Boniface Wainaina & Sato, Tomonori, 2018. "Interannual and spatial variability of solar radiation energy potential in Kenya using Meteosat satellite," Renewable Energy, Elsevier, vol. 116(PA), pages 88-96.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
- Filali Baba, Yousra & Al Mers, Ahmed & Ajdad, Hamid, 2020. "Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system: Towards a new approach for thermocline thermal optimization," Renewable Energy, Elsevier, vol. 153(C), pages 440-455.
- Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
- Ogunmodimu, Olumide & Okoroigwe, Edmund C., 2018. "Concentrating solar power technologies for solar thermal grid electricity in Nigeria: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 104-119.
- Paloma Martínez-Merino & Rodrigo Alcántara & Teresa Aguilar & Juan Jesús Gallardo & Iván Carrillo-Berdugo & Roberto Gómez-Villarejo & Mabel Rodríguez-Fernández & Javier Navas, 2019. "Stability and Thermal Properties Study of Metal Chalcogenide-Based Nanofluids for Concentrating Solar Power," Energies, MDPI, vol. 12(24), pages 1-11, December.
- Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
- Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
- Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
- Dettori, S. & Iannino, V. & Colla, V. & Signorini, A., 2018. "An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications," Applied Energy, Elsevier, vol. 227(C), pages 655-664.
- Buscemi, A. & Guarino, S. & Ciulla, G. & Lo Brano, V., 2021. "A methodology for optimisation of solar dish-Stirling systems size, based on the local frequency distribution of direct normal irradiance," Applied Energy, Elsevier, vol. 303(C).
- Miguel J. Prieto & Juan Á. Martínez & Rogelio Peón & Lourdes Á. Barcia & Fernando Nuño, 2017. "On the Convenience of Using Simulation Models to Optimize the Control Strategy of Molten-Salt Heat Storage Systems in Solar Thermal Power Plants," Energies, MDPI, vol. 10(7), pages 1-17, July.
- Plain, N. & Hingray, B. & Mathy, S., 2019.
"Accounting for low solar resource days to size 100% solar microgrids power systems in Africa,"
Renewable Energy, Elsevier, vol. 131(C), pages 448-458.
- Nicolas Plain & B. Hingray & Sandrine Mathy, 2019. "Accounting for low solar resource days to size 100% solar microgrids power systems in Africa," Post-Print hal-01848161, HAL.
- Okoroigwe, Edmund & Madhlopa, Amos, 2016. "An integrated combined cycle system driven by a solar tower: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 337-350.
- Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
- Bai, Wengang & Li, Hongzhi & Zhang, Xuwei & Qiao, Yongqiang & Zhang, Chun & Gao, Wei & Yao, Mingyu, 2022. "Thermodynamic analysis of CO2–SF6 mixture working fluid supercritical Brayton cycle used for solar power plants," Energy, Elsevier, vol. 261(PB).
- Hernández-Escobedo, Q. & Rodríguez-García, E. & Saldaña-Flores, R. & Fernández-García, A. & Manzano-Agugliaro, F., 2015. "Solar energy resource assessment in Mexican states along the Gulf of Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 216-238.
- Castillejo-Cuberos, A. & Cardemil, J.M. & Escobar, R., 2024. "Temporal upscaling of solar radiation components using an analytical model for variability modeling," Renewable Energy, Elsevier, vol. 229(C).
- Armando Castillejo-Cuberos & José Miguel Cardemil & Rodrigo Escobar, 2021. "Analyzing Regional and Local Changes in Irradiance during the 2019 Total Solar Eclipse in Chile, Using Field Observations and Analytical Modeling," Energies, MDPI, vol. 14(17), pages 1-23, August.
- Li, Danny H.W. & Lou, Siwei, 2018. "Review of solar irradiance and daylight illuminance modeling and sky classification," Renewable Energy, Elsevier, vol. 126(C), pages 445-453.
- Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
More about this item
Keywords
Downward surface solar irradiance; Intra-day variability; Intermittency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:201:y:2022:i:p1:p:354-378. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.