IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v227y2018icp655-664.html
   My bibliography  Save this article

An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications

Author

Listed:
  • Dettori, S.
  • Iannino, V.
  • Colla, V.
  • Signorini, A.

Abstract

In Concentrated Solar Power Plants, steam turbines controlled with standard Proportional Integrative Derivative (PID) methods may suffer from performance downgrading in power generation when the steam conditions deviate from nominal ones. An enhancement of standard steam turbine controller can be the key to achieve optimal performance also in non-nominal steam conditions. This paper presents the improvement of the PID control concept by exploiting Fuzzy Logic, an artificial intelligence technique that allows taking into account the human experience and knowledge on the system behavior. A real Concentrated Solar Power Plant has been modeled focusing on generated power control loop, its stability and performance analysis, knowledge useful to design a Fuzzy Inference System. A fuzzy logic controller is proposed to continuously adapt the PID parameters, to improve the steam turbine governor action. Its performance is compared to the classical PID tuned according to three different approaches. The fuzzy logic PID controller extends the simplicity of PID and adapts the control action to actual operating condition by providing the system with a sort of “decision-making skill”. The possibility to design implementable algorithms on a Programmable Logic Controller, which have stringent computational speed and memory requirements, has been explicitly taken into account in the developed work, through the minimization of the controller complexity with a reduced number of fuzzy sets and fuzzy rules within the fuzzy inference system.

Suggested Citation

  • Dettori, S. & Iannino, V. & Colla, V. & Signorini, A., 2018. "An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications," Applied Energy, Elsevier, vol. 227(C), pages 655-664.
  • Handle: RePEc:eee:appene:v:227:y:2018:i:c:p:655-664
    DOI: 10.1016/j.apenergy.2017.08.145
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917311613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.145?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viebahn, Peter & Lechon, Yolanda & Trieb, Franz, 2011. "The potential role of concentrated solar power (CSP) in Africa and Europe--A dynamic assessment of technology development, cost development and life cycle inventories until 2050," Energy Policy, Elsevier, vol. 39(8), pages 4420-4430, August.
    2. Desideri, Umberto & Campana, Pietro Elia, 2014. "Analysis and comparison between a concentrating solar and a photovoltaic power plant," Applied Energy, Elsevier, vol. 113(C), pages 422-433.
    3. Vasallo, Manuel Jesús & Bravo, José Manuel, 2016. "A MPC approach for optimal generation scheduling in CSP plants," Applied Energy, Elsevier, vol. 165(C), pages 357-370.
    4. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    5. Alqahtani, Bandar Jubran & Patiño-Echeverri, Dalia, 2016. "Integrated Solar Combined Cycle Power Plants: Paving the way for thermal solar," Applied Energy, Elsevier, vol. 169(C), pages 927-936.
    6. Cavallaro, Fausto, 2010. "Fuzzy TOPSIS approach for assessing thermal-energy storage in concentrated solar power (CSP) systems," Applied Energy, Elsevier, vol. 87(2), pages 496-503, February.
    7. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A., 2017. "Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia," Applied Energy, Elsevier, vol. 185(P2), pages 1268-1280.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Musawenkosi Lethumcebo Thanduxolo Zulu & Rudiren Pillay Carpanen & Remy Tiako, 2023. "A Comprehensive Review: Study of Artificial Intelligence Optimization Technique Applications in a Hybrid Microgrid at Times of Fault Outbreaks," Energies, MDPI, vol. 16(4), pages 1-32, February.
    3. Dadak, Ali & Mousavi, Seyed Ali & Mehrpooya, Mehdi & Kasaeian, Alibakhsh, 2022. "Techno-economic investigation and dual-objective optimization of a stand-alone combined configuration for the generation and storage of electricity and hydrogen applying hybrid renewable system," Renewable Energy, Elsevier, vol. 201(P1), pages 1-20.
    4. Masoumi, A.P. & Tavakolpour-Saleh, A.R. & Rahideh, A., 2020. "Applying a genetic-fuzzy control scheme to an active free piston Stirling engine: Design and experiment," Applied Energy, Elsevier, vol. 268(C).
    5. Milani, Dia & Luu, Minh Tri & Nelson, Scott & Abbas, Ali, 2022. "Process control strategies for solar-powered carbon capture under transient solar conditions," Energy, Elsevier, vol. 239(PE).
    6. Cojocaru, Emilian Gelu & Bravo, José Manuel & Vasallo, Manuel Jesús & Santos, Diego Marín, 2019. "Optimal scheduling in concentrating solar power plants oriented to low generation cycling," Renewable Energy, Elsevier, vol. 135(C), pages 789-799.
    7. Hu, Guoqing & You, Fengqi, 2024. "AI-enabled cyber-physical-biological systems for smart energy management and sustainable food production in a plant factory," Applied Energy, Elsevier, vol. 356(C).
    8. Stefano Dettori & Alessandro Maddaloni & Filippo Galli & Valentina Colla & Federico Bucciarelli & Damaso Checcacci & Annamaria Signorini, 2021. "Steam Turbine Rotor Stress Control through Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(13), pages 1-30, July.
    9. Nebiyu Kedir & Phuong H. D. Nguyen & Citlaly Pérez & Pedro Ponce & Aminah Robinson Fayek, 2023. "Systematic Literature Review on Fuzzy Hybrid Methods in Photovoltaic Solar Energy: Opportunities, Challenges, and Guidance for Implementation," Energies, MDPI, vol. 16(9), pages 1-38, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    2. Bame, Aaron T. & Furner, Joseph & Hoag, Ian & Mohammadi, Kasra & Powell, Kody & Iverson, Brian D., 2022. "Optimization of solar-coal hybridization for low solar augmentation," Applied Energy, Elsevier, vol. 319(C).
    3. Fu, Qianmei & Ding, Jing & Lao, Jiewei & Wang, Weilong & Lu, Jianfeng, 2019. "Thermal-hydraulic performance of printed circuit heat exchanger with supercritical carbon dioxide airfoil fin passage and molten salt straight passage," Applied Energy, Elsevier, vol. 247(C), pages 594-604.
    4. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    5. Awan, Ahmed Bilal & Zubair, Muhammad & Chandra Mouli, Kotturu V.V., 2020. "Design, optimization and performance comparison of solar tower and photovoltaic power plants," Energy, Elsevier, vol. 199(C).
    6. Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.
    7. Khamlich, Imane & Zeng, Kuo & Flamant, Gilles & Baeyens, Jan & Zou, Chongzhe & Li, Jun & Yang, Xinyi & He, Xiao & Liu, Qingchuan & Yang, Haiping & Yang, Qing & Chen, Hanping, 2021. "Technical and economic assessment of thermal energy storage in concentrated solar power plants within a spot electricity market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. da Rocha, Vinicius Roggério & Costa, Rodrigo Santos & Martins, Fernando Ramos & Gonçalves, André Rodrigues & Pereira, Enio Bueno, 2022. "Variability index of solar resource based on data from surface and satellite," Renewable Energy, Elsevier, vol. 201(P1), pages 354-378.
    9. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    10. Vincenzo Iannino & Valentina Colla & Mario Innocenti & Annamaria Signorini, 2017. "Design of a H ∞ Robust Controller with μ -Analysis for Steam Turbine Power Generation Applications," Energies, MDPI, vol. 10(7), pages 1-31, July.
    11. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    12. Xu, Xinhai & Vignarooban, K. & Xu, Ben & Hsu, K. & Kannan, A.M., 2016. "Prospects and problems of concentrating solar power technologies for power generation in the desert regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1106-1131.
    13. Carlos Castro & Iñigo Capellán-Pérez, 2018. "Concentrated Solar Power: Actual Performance and Foreseeable Future in High Penetration Scenarios of Renewable Energies," Biophysical Economics and Resource Quality, Springer, vol. 3(3), pages 1-20, September.
    14. Filali Baba, Yousra & Al Mers, Ahmed & Ajdad, Hamid, 2020. "Dimensionless model based on dual phase approach for predicting thermal performance of thermocline energy storage system: Towards a new approach for thermocline thermal optimization," Renewable Energy, Elsevier, vol. 153(C), pages 440-455.
    15. Sánchez-Amores, Ana & Martinez-Piazuelo, Juan & Maestre, José M. & Ocampo-Martinez, Carlos & Camacho, Eduardo F. & Quijano, Nicanor, 2023. "Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance," Applied Energy, Elsevier, vol. 334(C).
    16. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    17. Abdulrazzak Akroot & Mohamed Almaktar & Feras Alasali, 2024. "The Integration of Renewable Energy into a Fossil Fuel Power Generation System in Oil-Producing Countries: A Case Study of an Integrated Solar Combined Cycle at the Sarir Power Plant," Sustainability, MDPI, vol. 16(11), pages 1-29, June.
    18. Soria, Rafael & Lucena, André F.P. & Tomaschek, Jan & Fichter, Tobias & Haasz, Thomas & Szklo, Alexandre & Schaeffer, Roberto & Rochedo, Pedro & Fahl, Ulrich & Kern, Jürgen, 2016. "Modelling concentrated solar power (CSP) in the Brazilian energy system: A soft-linked model coupling approach," Energy, Elsevier, vol. 116(P1), pages 265-280.
    19. Hirbodi, Kamran & Enjavi-Arsanjani, Mahboubeh & Yaghoubi, Mahmood, 2020. "Techno-economic assessment and environmental impact of concentrating solar power plants in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    20. González-Portillo, Luis F. & Muñoz-Antón, Javier & Martínez-Val, José M., 2017. "An analytical optimization of thermal energy storage for electricity cost reduction in solar thermal electric plants," Applied Energy, Elsevier, vol. 185(P1), pages 531-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:227:y:2018:i:c:p:655-664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.