IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp833-840.html
   My bibliography  Save this article

Techno-economics of a trigeneration HRES; a step towards sustainable development

Author

Listed:
  • Kumar, Nagendra
  • Karmakar, Sujit

Abstract

Technological development has shown several alternatives for energy and water supplies; still, almost 30% of the population of India has either no access or limited access to energy and portable water incredibly remote-rural areas of the Indian coast. The present work aims to optimize a sustainable Hybrid Renewable Energy System for trigeneration using solid waste generated from the society with uninterrupted supply and affordable economics. A gasifier utilizes biomass to produce the biogas. Freshwater generation is done with the help of thermal desalination. Generally, the excess electricity produced from any distributed system is dumped. Whereas in the present study, that opportunity has been grabbed, and a thermal load controller has been implemented to convert this excess electricity into thermal energy for the desalination process. The result shows that electricity and heat production from the HRES is 80423 kWh/year and 34778.62 MJ/year, respectively, with an affordable energy cost-Rs.5.16/kWh, minor Pay Back Period-3.99 years, Internal Rate of Return of 18.2%, and Return on Investment of 23.6% with Net Present Cost -Rs. 4,678,224 and operating cost - Rs. 189424.30. A multi-effect desalination unit produces 9516.24 lit/day of freshwater using heat from the thermal load controller and micro-gas turbine. Furthermore, HRES serves 1.528 kg/h of cooking gas.

Suggested Citation

  • Kumar, Nagendra & Karmakar, Sujit, 2022. "Techno-economics of a trigeneration HRES; a step towards sustainable development," Renewable Energy, Elsevier, vol. 198(C), pages 833-840.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:833-840
    DOI: 10.1016/j.renene.2022.08.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012812
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mukherjee, C. & Denney, J. & Mbonimpa, E.G. & Slagley, J. & Bhowmik, R., 2020. "A review on municipal solid waste-to-energy trends in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    2. Okampo, Ewaoche John & Nwulu, Nnamdi, 2021. "Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kumar, Nagendra & Karmakar, Sujit, 2023. "Techno-eco-environmental analysis of a waste-to-energy based polygeneration through hybrid renewable energy system," Energy, Elsevier, vol. 283(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Agnieszka Kuś & Dorota Grego-Planer, 2021. "A Model of Innovation Activity in Small Enterprises in the Context of Selected Financial Factors: The Example of the Renewable Energy Sector," Energies, MDPI, vol. 14(10), pages 1-17, May.
    2. Siqueira, Mario B. & Monteiro Filho, Arthur, 2021. "Hybrid concentrating solar-landfill gas power-generation concept for landfill energy recovery," Applied Energy, Elsevier, vol. 298(C).
    3. Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
    4. Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    5. Przemysław Rajca & Andrzej Skibiński & Anna Biniek-Poskart & Monika Zajemska, 2022. "Review of Selected Determinants Affecting Use of Municipal Waste for Energy Purposes," Energies, MDPI, vol. 15(23), pages 1-17, November.
    6. Barone, G. & Buonomano, A. & Forzano, C. & Palombo, A., 2021. "Implementing the dynamic simulation approach for the design and optimization of ships energy systems: Methodology and applicability to modern cruise ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    7. Rafał Figaj & Maciej Żołądek & Maksymilian Homa & Anna Pałac, 2022. "A Novel Hybrid Polygeneration System Based on Biomass, Wind and Solar Energy for Micro-Scale Isolated Communities," Energies, MDPI, vol. 15(17), pages 1-33, August.
    8. Mendoza-Zapata, Luis & Maturana-Córdoba, Aymer & Mejía-Marchena, Ricardo & Cala, Anggie & Soto-Verjel, Joseph & Villamizar, Salvador, 2023. "Unlocking synergies between seawater desalination and saline gradient energy: Assessing the environmental and economic benefits for dual water and energy production," Applied Energy, Elsevier, vol. 351(C).
    9. Ramezani, Mohammad & Khazaei, Moein & Gholian-Jouybari, Fatemeh & Sandoval-Correa, Alejandro & Bonakdari, Hossein & Hajiaghaei-Keshteli, Mostafa, 2024. "Turquoise hydrogen and waste optimization: A Bi-objective closed-loop and sustainable supply chain model for a case in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 195(C).
    10. Tran, Huy & Juno, Edie & Arunachalam, Saravanan, 2023. "Emissions of wood pelletization and bioenergy use in the United States," Renewable Energy, Elsevier, vol. 219(P2).
    11. Li, Wei & Yuan, Zhihang & Chen, Xiaoliang & Wang, Hui & Wang, Luochun & Lou, Ziyang, 2021. "Green refuse derived fuel preparation and combustion performance from the solid residues to build the zero-waste city," Energy, Elsevier, vol. 225(C).
    12. Wienchol, Paulina & Szlęk, Andrzej & Ditaranto, Mario, 2020. "Waste-to-energy technology integrated with carbon capture – Challenges and opportunities," Energy, Elsevier, vol. 198(C).
    13. Mahmoudi, Ali & Bostani, Mohammad & Rashidi, Saman & Valipour, Mohammad Sadegh, 2023. "Challenges and opportunities of desalination with renewable energy resources in Middle East countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    14. Guanru Wang & Dariusz Krzywda & Sergey Kondrashev & Lubov Vorona-Slivinskaya, 2021. "Recycling and Upcycling in the Practice of Waste Management of Construction Giants," Sustainability, MDPI, vol. 13(2), pages 1-14, January.
    15. Munir, M.T. & Mohaddespour, Ahmad & Nasr, A.T. & Carter, Susan, 2021. "Municipal solid waste-to-energy processing for a circular economy in New Zealand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    16. Matheus Oliveira & Ana Ramos & Tamer M. Ismail & Eliseu Monteiro & Abel Rouboa, 2022. "A Review on Plasma Gasification of Solid Residues: Recent Advances and Developments," Energies, MDPI, vol. 15(4), pages 1-21, February.
    17. Robert Giel & Artur Kierzkowski, 2021. "A Fuzzy Multi-Criteria Model for Municipal Waste Treatment Systems Evaluation including Energy Recovery," Energies, MDPI, vol. 15(1), pages 1-16, December.
    18. Zhang, Weiping & Maleki, Akbar, 2022. "Modeling and optimization of a stand-alone desalination plant powered by solar/wind energies based on back-up systems using a hybrid algorithm," Energy, Elsevier, vol. 254(PC).
    19. Ferraz de Campos, Victor Arruda & Silva, Valter Bruno & Cardoso, João Sousa & Brito, Paulo S. & Tuna, Celso Eduardo & Silveira, José Luz, 2021. "A review of waste management in Brazil and Portugal: Waste-to-energy as pathway for sustainable development," Renewable Energy, Elsevier, vol. 178(C), pages 802-820.
    20. Kumar, Aman & Singh, Ekta & Mishra, Rahul & Lo, Shang Lien & Kumar, Sunil, 2023. "Global trends in municipal solid waste treatment technologies through the lens of sustainable energy development opportunity," Energy, Elsevier, vol. 275(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:833-840. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.