IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v197y2022icp50-58.html
   My bibliography  Save this article

Wind farm blockage in a stable atmospheric boundary layer

Author

Listed:
  • Strickland, Jessica M.I.
  • Gadde, Srinidhi N.
  • Stevens, Richard J.A.M.

Abstract

Wind farm blockage is the flow deceleration in front of a large turbine array, due to which the first wind farm row produces less power than a corresponding solitary row. Understanding wind farm blockage is crucial as a failure to accurately model the effect leads to a systematic difference between the modeled and actual wind farm performance. While stable atmospheric conditions are known to impact wind farm performance, the effect on wind farm blockage is not well understood. We use large eddy simulations to investigate blockage in a stably stratified atmospheric boundary layer without capping inversion by systematically varying the streamwise turbine spacing and the surface cooling rate. We consider stable boundary layers without capping inversion as it allows us to isolate the effect of surface stability. Primarily, we demonstrate that wind farm blockage increases with atmospheric stability due to the deflection of relatively cold flow over the wind farm. Displacement of this high-density colder air creates a high-pressure region at the wind farm entrance. The formation of the high-pressure region enhances the adverse pressure gradient and increases the flow deceleration in front of the wind farm under stable atmospheric conditions.

Suggested Citation

  • Strickland, Jessica M.I. & Gadde, Srinidhi N. & Stevens, Richard J.A.M., 2022. "Wind farm blockage in a stable atmospheric boundary layer," Renewable Energy, Elsevier, vol. 197(C), pages 50-58.
  • Handle: RePEc:eee:renene:v:197:y:2022:i:c:p:50-58
    DOI: 10.1016/j.renene.2022.07.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122011119
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.07.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leonardo P. Chamorro & Fernando Porté-Agel, 2011. "Turbulent Flow Inside and Above a Wind Farm: A Wind-Tunnel Study," Energies, MDPI, vol. 4(11), pages 1-21, November.
    2. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    3. James Bleeg & Mark Purcell & Renzo Ruisi & Elizabeth Traiger, 2018. "Wind Farm Blockage and the Consequences of Neglecting Its Impact on Energy Production," Energies, MDPI, vol. 11(6), pages 1-20, June.
    4. Stevens, Richard J.A.M. & Graham, Jason & Meneveau, Charles, 2014. "A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms," Renewable Energy, Elsevier, vol. 68(C), pages 46-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Charlotte Bay Hasager & Nicolai Gayle Nygaard & Gregory S. Poulos, 2023. "Wind Farm Blockage Revealed by Fog: The 2018 Horns Rev Photo Case," Energies, MDPI, vol. 16(24), pages 1-19, December.
    3. Chanprasert, W. & Sharma, R.N. & Cater, J.E. & Norris, S.E., 2022. "Large Eddy Simulation of wind turbine wake interaction in directionally sheared inflows," Renewable Energy, Elsevier, vol. 201(P1), pages 1096-1110.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).
    2. Kale, Baris & Buckingham, Sophia & van Beeck, Jeroen & Cuerva-Tejero, Alvaro, 2023. "Comparison of the wake characteristics and aerodynamic response of a wind turbine under varying atmospheric conditions using WRF-LES-GAD and WRF-LES-GAL wind turbine models," Renewable Energy, Elsevier, vol. 216(C).
    3. Ge, Mingwei & Gayme, Dennice F. & Meneveau, Charles, 2021. "Large-eddy simulation of wind turbines immersed in the wake of a cube-shaped building," Renewable Energy, Elsevier, vol. 163(C), pages 1063-1077.
    4. Zehtabiyan-Rezaie, Navid & Abkar, Mahdi, 2024. "An extended k−ɛ model for wake-flow simulation of wind farms," Renewable Energy, Elsevier, vol. 222(C).
    5. Hayat, Imran & Chatterjee, Tanmoy & Liu, Huiwen & Peet, Yulia T. & Chamorro, Leonardo P., 2019. "Exploring wind farms with alternating two- and three-bladed wind turbines," Renewable Energy, Elsevier, vol. 138(C), pages 764-774.
    6. Victor P. Stein & Hans-Jakob Kaltenbach, 2022. "Validation of a Large-Eddy Simulation Approach for Prediction of the Ground Roughness Influence on Wind Turbine Wakes," Energies, MDPI, vol. 15(7), pages 1-25, April.
    7. Eidi, Ali & Ghiassi, Reza & Yang, Xiang & Abkar, Mahdi, 2021. "Model-form uncertainty quantification in RANS simulations of wakes and power losses in wind farms," Renewable Energy, Elsevier, vol. 179(C), pages 2212-2223.
    8. Dai, Xuan & Xu, Da & Zhang, Mengqi & Stevens, Richard J.A.M., 2022. "A three-dimensional dynamic mode decomposition analysis of wind farm flow aerodynamics," Renewable Energy, Elsevier, vol. 191(C), pages 608-624.
    9. Liang, Xiaoling & Fu, Shifeng & Cai, Fulin & Han, Xingxing & Zhu, Weijun & Yang, Hua & Shen, Wenzhong, 2023. "Experimental investigation on wake characteristics of wind turbine and a new two-dimensional wake model," Renewable Energy, Elsevier, vol. 203(C), pages 373-381.
    10. Liu, Luoqin & Stevens, Richard J.A.M., 2021. "Effects of atmospheric stability on the performance of a wind turbine located behind a three-dimensional hill," Renewable Energy, Elsevier, vol. 175(C), pages 926-935.
    11. Zhaobin Li & Xiaohao Liu & Xiaolei Yang, 2022. "Review of Turbine Parameterization Models for Large-Eddy Simulation of Wind Turbine Wakes," Energies, MDPI, vol. 15(18), pages 1-28, September.
    12. Zhang, Ziyu & Huang, Peng & Bitsuamlak, Girma & Cao, Shuyang, 2024. "Large-eddy simulation of upwind-hill effects on wind-turbine wakes and power performance," Energy, Elsevier, vol. 294(C).
    13. Yang, Di & Meneveau, Charles & Shen, Lian, 2014. "Effect of downwind swells on offshore wind energy harvesting – A large-eddy simulation study," Renewable Energy, Elsevier, vol. 70(C), pages 11-23.
    14. Carl R. Shapiro & Genevieve M. Starke & Charles Meneveau & Dennice F. Gayme, 2019. "A Wake Modeling Paradigm for Wind Farm Design and Control," Energies, MDPI, vol. 12(15), pages 1-19, August.
    15. Stevens, Richard J.A.M. & Martínez-Tossas, Luis A. & Meneveau, Charles, 2018. "Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments," Renewable Energy, Elsevier, vol. 116(PA), pages 470-478.
    16. Mattuella, J.M.L. & Loredo-Souza, A.M. & Oliveira, M.G.K. & Petry, A.P., 2016. "Wind tunnel experimental analysis of a complex terrain micrositing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 110-119.
    17. Abutunis, A. & Taylor, G. & Fal, M. & Chandrashekhara, K., 2020. "Experimental evaluation of coaxial horizontal axis hydrokinetic composite turbine system," Renewable Energy, Elsevier, vol. 157(C), pages 232-245.
    18. Yaqing Jin & Huiwen Liu & Rajan Aggarwal & Arvind Singh & Leonardo P. Chamorro, 2016. "Effects of Freestream Turbulence in a Model Wind Turbine Wake," Energies, MDPI, vol. 9(10), pages 1-12, October.
    19. Kelan Patel & Thomas D. Dunstan & Takafumi Nishino, 2021. "Time-Dependent Upper Limits to the Performance of Large Wind Farms Due to Mesoscale Atmospheric Response," Energies, MDPI, vol. 14(19), pages 1-16, October.
    20. Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2020. "A review of full-scale wind-field measurements of the wind-turbine wake effect and a measurement of the wake-interaction effect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:197:y:2022:i:c:p:50-58. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.