IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v111y2017icp295-306.html
   My bibliography  Save this article

Combining metabolic evolution and systematic fed-batch optimization for efficient single-cell oil production from sugarcane bagasse

Author

Listed:
  • Unrean, Pornkamol
  • Khajeeram, Sutamat
  • Champreda, Verawat

Abstract

We developed in this study an efficient production process of SCO from sugarcane bagasse hydrolysates using Y. lipolytica. We described a dynamic flux balance model strategy based on a genome-scale metabolic model of Y. lipolytica and SCO fermentation kinetics that applied for rational design of optimized fed-batch process with high single cell oil accumulation. Furthermore, metabolic evolution approach with buoyancy screening was implemented for selecting a high lipid producing yeast strain. The efficient conversion process combined model-based fed-batch process design and evolution-based strain optimization enabling high SCO titer of 45 g/L and 0.25 g-SCO/g-glucose yield from hydrolysates, a 6-fold improvement in titer and 1.4-fold improvement in yield over batch wild-type process. Through this combinatorial optimization effort, we demonstrated the cost-effective, lignocellulose-based SCO process that could meet techno-economic feasibility providing a sustainable alternative to vegetative oils for biofuels and oleochemicals synthesis.

Suggested Citation

  • Unrean, Pornkamol & Khajeeram, Sutamat & Champreda, Verawat, 2017. "Combining metabolic evolution and systematic fed-batch optimization for efficient single-cell oil production from sugarcane bagasse," Renewable Energy, Elsevier, vol. 111(C), pages 295-306.
  • Handle: RePEc:eee:renene:v:111:y:2017:i:c:p:295-306
    DOI: 10.1016/j.renene.2017.04.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148117303294
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2017.04.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xuemin & Wang, Yanan & He, Qiaoning & Liu, Yantao & Zhao, Man & Liu, Yi & Zhou, Wenting & Gong, Zhiwei, 2022. "Highly efficient fed-batch modes for enzymatic hydrolysis and microbial lipogenesis from alkaline organosolv pretreated corn stover for biodiesel production," Renewable Energy, Elsevier, vol. 197(C), pages 1133-1143.
    2. Bao, Wenjun & Li, Zifu & Wang, Xuemei & Gao, Ruiling & Zhou, Xiaoqin & Cheng, Shikun & Men, Yu & Zheng, Lei, 2021. "Approaches to improve the lipid synthesis of oleaginous yeast Yarrowia lipolytica: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:111:y:2017:i:c:p:295-306. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.